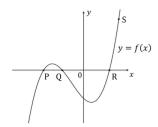


Polynomial Functions

Mark Schemes

Question 1

Below is the graph of a function $f(x) = ax^3 + bx^2 + cx + d$, passing through the points P(-3,0), Q(-2,0), $R(\frac{1}{2},0)$ and S(2,60).



(a) Find the values of a, b, c and d.

[4]

The function is translated vertically by the vector $\binom{0}{k}$ so that it passes through the point (3,190).

(b) Find the value of k.

[2]

a) Points P, Q, and R tell us that -3, -2, and $\frac{1}{2}$ are roots of f(x) — therefore (x*3), (x*2), and (2x-1) must be factors.

$$f(x) = p(x+3)(x+2)(2x-1)$$

$$= p(x^2+5x+6)(2x-1)$$

$$= p(2x^3+9x^2+7x-6)$$

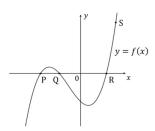
And point S tells us that f(2) = 60

$$f(2) = p(2(2)^{3} + 9(2)^{2} + 7(2) - 6) = 60$$

$$\implies 60 p = 60 \implies p = 1$$

$$\implies f(x) = 2x^{3} + 9x^{2} + 7x - 6$$

Below is the graph of a function $f(x)=ax^3+bx^2+cx+d$, passing through the points P(-3,0), Q(-2,0), R $\left(\frac{1}{2},0\right)$ and S(2,60).



(a) Find the values of a, b, c and d.

The function is translated vertically by the vector $\binom{0}{k}$ so that it passes through the point (3, 190).

(b) Find the value of k.

b) (c) is a vertical translation by k units.

$$f(3) = 2(3)^3 + 9(3)^2 + 7(3) - 6 = 150$$

$$50 + k = 190$$

[2]

[4]

[2]

[4]

[2]

[2]

[4]

Question 2

- (a) Given that the equation $2x^2 + 4x m = 0$ has two real solutions, find the set of
- (b) Given that the function $f(x) = x^2 5x + 2c$ has repeated roots, find c.
- (c) Given that the function $g(x) = 2x^2 + 2kx + \left(\frac{3}{2} k\right)$ has no real roots, find the set of
- a) Two real solutions means the discriminant is greater than zero.

$$(4)^{2} - 4(2)(-m) > 0$$

Discriminant $\Delta = b^2 - 4ac$

- (a) Given that the equation $2x^2 + 4x m = 0$ has two real solutions, find the set of possible values of m.
- (b) Given that the function $f(x) = x^2 5x + 2c$ has repeated roots, find c.
- (c) Given that the function $g(x) = 2x^2 + 2kx + \left(\frac{3}{2} k\right)$ has no real roots, find the set of possible values of k.
- b) Repeated roots means the discriminant is equal to zero.

$$(-5)^2 - 4(1)(2c) = 0$$

$$c = \frac{25}{8}$$

 $\Delta = b^2 - 4ac$ Discriminant

[2]

[4]

(a) Given that the equation $2x^2 + 4x - m = 0$ has two real solutions, find the set of possible values of m.

(b) Given that the function $f(x) = x^2 - 5x + 2c$ has repeated roots, find c.

(c) Given that the function $g(x) = 2x^2 + 2kx + \left(\frac{3}{2} - k\right)$ has no real roots, find the set of possible values of k.

Discriminant $\Delta = b^2 - 4ac$

c) No real roots means the discriminant is less than zero.

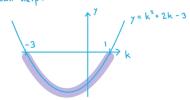
$$(2k)^{2} - H(2)(\frac{3}{2} - k) < 0$$

$$4k^{2} + 8k - 12 < 0$$

$$k^2 + 2k - 3 < 0$$

This is equal to zero for k=-3 or k=1

To see where it's less than zero, a sketch can help:



Question 3

Let a function f be defined by $f(x) = 2x^3 + 7x^2 - 3x - 18$.

- (i) Show that (x + 3) is a factor of f(x).
- (ii) Hence factorise f(x) fully.
- (iii) Write down all the solutions to $2x^3 + 7x^2 3x 18 = 0$.

(i)
$$f(-3) = 2(-3)^3 + 7(-3)^2 - 3(-3) - 18$$
$$= -54 + 63 + 9 - 18 = 0$$
$$f(-3) = 0, \text{ so by the factor theorem}$$
$$(x+3) = (x-(-3)) \text{ is a factor of } f(x)$$

(ii)
$$f(x) = (x+3)(2x^2 + x - 6)$$
 Factorise by inspection, or by using polynomial or synthetic division

$$f(x) = (x+3)(2x-3)(x+2)$$
Then factorise the quadratic factor

(iii)
$$x = -3, -2, \text{ or } \frac{3}{2}$$

[6]

(a) Factorise fully $6x^3 + x^2 - 12x + 5$.

(b) $f(x) = ax^3 + (5a - 2)x^2 + (4a + 2)x - 2a$

(i) Given that (x + 3) is a factor of f(x), find a.

(ii) Hence factorise f(x) fully.

a) Note that the sum of the coefficients is zero,

i.e.
$$6+1-12+5=0$$
. This means that

1 is a root of $6x^3+x^2-12x+5=0$.

$$6(1)^3+(1)^2-12(1)+5=0$$
, therefore $(x-1)$ is a

factor of $6x^3+x^2-12x+5$ by the factor theorem

$$6x^3+x^2-12x+5=(x-1)(6x^2+7x-5)$$
Factorise by inspection, or by using polynomial or synthetic division

$$=(x-1)(3x+5)(2x-1)$$
Then factorise the quadratic factor

(a) Factorise fully $6x^3 + x^2 - 12x + 5$.

(b) $f(x) = ax^3 + (5a - 2)x^2 + (4a + 2)x - 2a$

(i) Given that (x + 3) is a factor of f(x), find a.

(ii) Hence factorise f(x) fully.

(ii) b) (i) If
$$(x+3)$$
 is a factor, then by the factor theorem we know that $f(-3) = 0$:

$$a(-3)^3 + (5a-2)(-3)^2 + (4a+2)(-3) - 2a = 0$$

$$-27a + 45a - 18 - 12a - (6 - 2a = 0)$$

$$4a - 24 = 0 \implies a = 6$$
(ii) $\implies f(x) = (6x^3 + 28x^2 + 26x - 12)$

$$= (x+3)(6x^2 + 10x - 4)$$
Factorise by inspection, or by using polynomial or synthetic division
$$= 2(x+3)(3x^2 + 5x - 2)$$

$$f(x) = 2(x+3)(3x-1)(x+2)$$
 Then factorise the quadratic factor

Consider the polynomial $g(x) = 3x^5 - 25x^4 + 72x^3 - 72x^2 - 16x + 48$.

(a) Show that 2 is a root of g(x).

[2]

(b) Given that 2 is a root of g(x) with multiplicity 3, factorise g(x) fully and hence state the other two roots.

[5]

a)
$$g(2) = 3(2)^{5} - 25(2)^{4} + 72(2)^{3} - 72(2)^{2} - 16(2) + 48$$

$$= 96 - 400 + 576 - 288 - 32 + 48$$

$$= 720 - 720 = 0$$

$$g(2) = 0, \text{ so } 2 \text{ is a root of } g(x)$$

Consider the polynomial $g(x) = 3x^5 - 25x^4 + 72x^3 - 72x^2 - 16x + 48$.

(a) Show that 2 is a root of g(x).

[2]

(b) Given that 2 is a root of g(x) with multiplicity 3, factorise g(x) fully and hence state

the other two roots.

This means that
$$(x-2)^3$$
 is a factor of $q(x)$.

b)
$$(x-2)^3 = (x-2)(x-2)(x-2)$$

= $(x^2-4x+4)(x-2)$
= $x^3-6x^2+12x-8$

= x3-6x2+12x-8

Factorise by inspection, or by using polynomial or synthetic division

So
$$g(x) = (x^3 - 6x^2 + 12x - 8)(3x^2 - 7x - 6)$$

=
$$(x^3 - 6x^2 + 12x - 8)(3x + 2)(x - 3)$$
 Then factorise the quadratic factor

$$g(x) = (x-2)^3(3x+2)(x-3)$$

 $g(x) = (x-2)^3 (3x+2)(x-3)$ The other roots are 3 and $-\frac{2}{3}$

[5]

Question 6

Consider the function $f(x) = 4x^3 + 6x^2 - 7x + 2$.

(i) Find the quotient and remainder when $4x^3 + 6x^2 - 7x + 2$ is divided by (x-2).

(ii) Hence write $4x^3 + 6x^2 - 7x + 2$ in the form $(x-2)(ax^2 + bx + c) + d$, where (a, b, c) and (a, b, c) are constants to be determined.

(i) By the remainder theorem the remainder is $f(2) = 4(2)^{3} + 6(2)^{2} - 7(2) + 2 = 44$

So $f(x) = \frac{4x^3 + 6x^2 - 7x - 42}{(x-2) \text{ times quotient}} + 44$

 $4x^{3} + 6x^{2} - 7x - 42 = (x - 2)(4x^{2} + 14x + 21)$ Foctorise by inspection

quotient = 4x2 + 14x + 21 remainder = 44

(ii)

4x3+6x2-7x-42 = (x-2)(4x2+14x+21)+44

Note: Polynomial division or synthetic division could also be used to answer this question.

Question 7

The function $f(x) = 2x^3 - 5x^2 + ax + b$ has (2x + 3) as a factor, and when f(x) is divided by (x - 2) the remainder is 7.

(a) Show that a and b must satisfy the simultaneous equations:

2a + b = 113a - 2b = -36

(b) Hence find a and b.

a) If $2x + 3 = 2(x + \frac{3}{2})$ is a factor, then by the factor theorem $f(-\frac{3}{2}) = 0$: $2(-\frac{3}{2})^3 - 5(-\frac{3}{2})^2 + a(-\frac{3}{2}) + b = 0$ $-\frac{27}{4} - \frac{45}{4} - \frac{3}{2}a + b = 0$ $\frac{3}{2}a - b = -\frac{36}{2} \implies 3a - 2b = -36$

If $f(x) \div (x-2)$ has remainder 7, then by the remainder theorem f(2) = 7:

$$2(2)^{3} - 5(2)^{2} + a(2) + b = 7$$

$$16 - 20 + 2a + b = 7$$

$$2a + b - 4 = 7 \implies 2a + b = 11$$

[5]

[2]

The function $f(x) = 2x^3 - 5x^2 + ax + b$ has (2x + 3) as a factor, and when f(x) is divided by (x - 2) the remainder is 7.

(a) Show that a and b must satisfy the simultaneous equations:

$$2a + b = 11$$
 ① $3a - 2b = -36$ ②

(b) Hence find a and b.

b)
$$2 \times 0$$
 $+ (3a - 2b = -36)$
 $+ (2a - 2b = -36)$
 $+ (3a - 2b = -36)$

Substitute value for a into 1): [5]

$$2(-2) + b = 11 \implies b = 15$$

[2]

Question 8

Given that 3 + 2i is one of the roots of the equation $x^3 - 3x^2 - 5x + 39 = 0$, find the

[5]

Complex roots of polynomials 3-2i is another root always occur in complex conjugate pairs.

Therefore (x-(3+2i))(x-(3-2i)) is a factor of $x^3 - 3x^2 - 5x + 39$

$$(x - (3*2))(x - (3-2)) = x^{2} - (3*2) + 3-2)x + (3*2)(3-2)$$

$$= x^{2} - 6x + 13$$

$$\Rightarrow x^3 - 3x^2 - 5x + 39 = (x^2 - 6x + 13)(x + 3)$$

You should be able to find this factor by inspection.

[5]

[5]

Question 9

(a) For each of the following polynomials, find the sum of the roots and the product of the roots.

(i)
$$f(x) = 9x^4 + 7x^3 - 3x + 2$$

(ii)
$$g(x) = 7x^5 - x^4 + 2x^3 + x^2 - 5x + 14$$

(iii)
$$h(x) = 2x^3 - 5x^2 - 3x$$

(iv)
$$j(x) = -3x^4 + 2x^2 + 5x - 3$$

(b) Consider the equation $6x^3 - (4a)x^2 - (a+2)x = 0$.

Given that the sum of the roots is $\frac{8}{3}$, find the three roots of the equation.

Sum & product of the roots of polynomial equations of the form

Sum is
$$\frac{-a_{n-1}}{a_n}$$
; product is $\frac{\left(-1\right)^n a_0}{a_n}$

a) (i) $sum = -\frac{7}{9}$ product = $\frac{(-1)^4 \cdot 2}{9} = \frac{2}{9}$

(ii) Sum = $\frac{-(-1)}{7} = \frac{1}{7}$ product = $\frac{(-1)^5 \cdot 14}{7} = -2$

(iii) $sum = \frac{-(-5)}{2} = \frac{5}{2}$ product = $\frac{(-1)^2 \cdot 0}{2} = 0$

(iv) $sum = \frac{-0}{(-3)} = 0$ product $= \frac{(-1)^4 \cdot (-3)}{-3} = 1$

[5]

[5]

(a) For each of the following polynomials, find the sum of the roots and the product of the

(i)
$$f(x) = 9x^4 + 7x^3 - 3x + 2$$

(ii)
$$g(x) = 7x^5 - x^4 + 2x^3 + x^2 - 5x + 14$$

(iii)
$$h(x) = 2x^3 - 5x^2 - 3x$$

(iv)
$$j(x) = -3x^4 + 2x^2 + 5x - 3$$

(b) Consider the equation $6x^3 - (4a)x^2 - (a+2)x = 0$.

Given that the sum of the roots is $\frac{8}{3}$, find the three roots of the equation.

b)
$$\frac{-(-4a)}{6} = \frac{2a}{3} = \frac{8}{3} \implies a = 4$$
 Use sum of roots formula to find a

$$6x^3 - 16x^2 - 6x = 0$$

$$3x^3 - 8x^2 - 3x = 0$$

$$x(3x^2-8x-3)=0$$

$$x(3x+1)(x-3)=0$$

$$x = 0, -\frac{1}{3}, 3$$

Note that $O + \left(-\frac{1}{3}\right) + 3 = \frac{8}{3}$ as expected

Sum & product of the roots of polynomial equations of the form

$$\sum_{r=0}^{n} a_r x^r = 0$$

Sum is
$$\frac{-a_{n-1}}{a_n}$$
; product is $\frac{\left(-1\right)^n a_0}{a_n}$

Question 10

For the function $f(x) = ax^4 + bx^3 - x^2 - 24x - (5b + 1)$, the sum of the roots is $\frac{-7}{2}$ and the product of the roots is -18. Find the values of a and b.

[4]

Use sum and product formulae to find simultaneous equations in a and b:

$$\frac{-b}{a} = \frac{-7}{2} \implies 7a - 2b = 0 \quad 0$$

$$\frac{(-1)^{4} \cdot (-(5b+1))}{a} = -\frac{5b+1}{a} = -18 \implies 18a - 5b = 1$$
 2

Sum & product of the roots of polynomial equations of the form

Sum is $\frac{-a_{n-1}}{a_n}$; product is $\frac{(-1)^n a_0}{a_n}$

The function $f(x) = (x-3)(x^2+3x-4)(ax^2+bx+c)$ has three real and two complex roots.

(a) Find the three real roots.

[2]

It is given for f(x) that the sum of the roots is $-\frac{3}{2}$ and the product of the roots is -60.

(b) Find the two complex roots, giving your answers in exact form.

[5]

(c) Given that f(2) = -144, find the values of a, b and c.

[4]

a) $x^2 + 3x - 4 = (x - 1)(x + 4)$, so $f(x) = (x - 3)(x - 1)(x + 4)(ax^2 + bx + c)$

The real roots are 3, 1, and -4.

b) Let the two roots of ax2 + bx + c be a and B

 $3+1+(-4)+4+\beta=-\frac{3}{2} \implies 4+\beta=-\frac{3}{2}$

 $(3)(1)(-4)(4)(\beta) = -60 \implies \alpha\beta = 5 \implies \beta = \frac{5}{\alpha}$ (2)

The function $f(x) = (x-3)(x^2+3x-4)(ax^2+bx+c)$ has three real and two complex roots.

(a) Find the three real roots.

It is given for f(x) that the sum of the roots is $-\frac{3}{2}$ and the product of the roots is -60.

(b) Find the two complex roots, giving your answers in exact form.

[5]

[2]

(c) Given that f(2) = -144, find the values of a, b and c.

Substitute 2 into 1):

and

$$\implies$$
 $d + \frac{5}{\alpha} = -\frac{3}{2} \implies 2d^2 + 3d + 10 = 0$

$$\Rightarrow \Rightarrow \alpha = \frac{-3 \pm \sqrt{3^2 - 4(2)(10)}}{2(2)} = -\frac{3}{4} \pm \frac{\sqrt{71}}{4};$$

Solutions of a quadratic equation $ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, $a \ne 0$

If we choose the 'plus' version of that for α , then we get the 'minus' version for β (and vice versa). This is expected, as α and β must be a complex conjugate pair.

$$-\frac{3}{4} + \frac{\sqrt{71}}{4}i$$
 and $-\frac{3}{4} - \frac{\sqrt{71}}{4}i$

The function $f(x) = (x-3)(x^2+3x-4)(ax^2+bx+c)$ has three real and two complex roots.

(a) Find the three real roots.

It is given for f(x) that the sum of the roots is $-\frac{3}{2}$ and the product of the roots is -60.

(b) Find the two complex roots, giving your answers in exact form.

$$-\frac{3}{4} + \frac{\sqrt{71}}{4}i$$
 and $-\frac{3}{4} - \frac{\sqrt{71}}{4}i$ [5]

(c) Given that f(2) = -144, find the values of a, b and c.

[2]

[2]

[3]

[2]

c)
$$\alpha x^{2} + bx + c = \alpha \left(x^{2} + \frac{b}{\alpha}x + \frac{c}{\alpha}\right)$$

$$= \alpha \left(x - \left(-\frac{3}{4} + \frac{\sqrt{11}}{4}i\right)\right) \left(x - \left(-\frac{3}{4} - \frac{\sqrt{11}}{4}i\right)\right) \quad \text{Use roots from part (b)}$$

$$= \alpha \left(x^{2} + \frac{3}{2}x + 5\right) \quad \text{Expand brackets and simplify}$$

$$50 \quad \frac{b}{b} = \frac{3}{2}, \quad \frac{c}{a} = 5$$

$$f(2) = (2-3)((2)^{2} + 3(2) - 4)(a((2)^{2} + \frac{3}{2}(2) + 5)) = -144$$

$$\Rightarrow (-1)(6)(12a) = -72a = -144$$

$$\Rightarrow a = 2 \Rightarrow \frac{b}{2} = \frac{3}{2}, \frac{c}{2} = 5$$

Question 12

 α and β are non-real roots of the equation $\,x^2+3kx+2k+1=0,\,$ where $\,k>0\,$ is a constant.

(a) Find $\alpha + \beta$ and $\alpha\beta$, in terms of k.

(b) Given that $\alpha^2 + \beta^2 = 3$, show that $(\alpha + \beta)^2 = 4k + 5$.

(c) Hence find the value of k.

a) Use sum and product of roots formulae

$$\alpha + \beta = \frac{-3k}{1} = -3k$$

$$\alpha \beta = \frac{(-1)^2 \cdot (2k+1)}{1} = 2k+1$$

Sum & product of the roots of polynomial equations of the form

Sum is
$$\frac{-a_{n-1}}{a_n}$$
; product is $\frac{(-1)^n a_0}{a_n}$

[2]

[3]

[2]

 α and β are non-real roots of the equation $x^2+3kx+2k+1=0$, where k>0 is a constant.

(a) Find $\alpha + \beta$ and $\alpha\beta$, in terms of k.

$$a+\beta=-3k$$
 $a\beta=2k+1$

(b) Given that $\alpha^2 + \beta^2 = 3$, show that $(\alpha + \beta)^2 = 4k + 5$.

(c) Hence find the value of k.

b)
$$(\alpha + \beta)^{2} = \alpha^{2} + 2\alpha\beta + \beta^{2}$$

$$= 2(\alpha\beta) + (\alpha^{2} + \beta^{2})$$

$$= 2(2k+1) + 3$$

$$= 4k+2+3$$

$$= 4k+5$$

 α and β are non-real roots of the equation $\,x^2+3kx+2k+1=0,\,$ where $\,\overline{k>0}\,$ is a constant.

(a) Find $\alpha + \beta$ and $\alpha\beta$, in terms of k.

$$a+\beta=-3k$$
 $a\beta=2k+1$

(b) Given that $\alpha^2 + \beta^2 = 3$, show that $(\alpha + \beta)^2 = 4k + 5$.

(c) Hence find the value of k.

c) Combine results from parts (a) and (b):

$$\Rightarrow$$
 $(-3k)^2 = 4k + 5$

$$\Rightarrow 9k^2 - 4k - 5 = 0$$

[3] =>
$$(9k+5)(k-1)=0$$
 Factorise

=>
$$k = -\frac{5}{9}$$
 or $k = 1$

Consider the function $f(x) = kx^3 + 3x^2 + 11x + 3k$, where k is a constant.

It is given that (2x - 1) is a factor of f(x).

(a) Find the value of k.

(b) Fully factorise f(x).

(c) Hence sketch the graph of y=f(x). Clearly label the coordinates of any points where the graph intersects the coordinate axes.

[3]

[2]

[3]

[3]

[2]

[3]

a) If (2x-1) is a factor, then by the factor theorem we know that $f(\frac{1}{2}) = 0$:

$$k\left(\frac{1}{2}\right)^{3} + 3\left(\frac{1}{2}\right)^{2} + 11\left(\frac{1}{2}\right) + 3k = 0$$

$$\frac{1}{8}k + \frac{3}{4} + \frac{11}{2} + 3k = 0$$

$$k + 6 + 44 + 24k = 0$$

$$25k + 50 = 0$$

Consider the function $f(x) = kx^3 + 3x^2 + 11x + 3k$, where k is a constant.

It is given that (2x - 1) is a factor of f(x).

(a) Find the value of k. k = -2

(b) Fully factorise f(x).

(c) Hence sketch the graph of y = f(x). Clearly label the coordinates of any points where

the graph intersects the coordinate axes.

 $f(x) = -(2x-1)(x^2 + x + 6)$ $= 2ax^3 + (2b-a)x^2 + (2c-b)x - c$ $\Rightarrow a = -1, b = 1, c = 6$ $f(x) = (2x-1)(-x^2 + x + 6)$ $= -(2x-1)(x^2 - x - 6)$

Note: You could also use polynomial division to find the -x2+x+6 factor.

[3]

[3]

Consider the function $f(x) = kx^3 + 3x^2 + 11x + 3k$, where k is a constant.

It is given that (2x - 1) is a factor of f(x).

(a) Find the value of k. k = -2

(b) Fully factorise f(x). f(x) = -(2x-1)(x-3)(x+2)

(c) Hence sketch the graph of y=f(x). Clearly label the coordinates of any points where the graph intersects the coordinate axes.

c) $f(x) = -2x^3 + 3x^2 + 11x - 6 = -(2x - 1)(x - 3)(x + 2)$ $\Rightarrow x - \text{intercepts at } x = \frac{1}{2}, 3 \text{ and } -2$ $\Rightarrow y - \text{intercept at } y = f(0) = -6$

The $-2x^3$ term tells us that f(x) will be: large and positive when x is large and negative large and negative when x is large and positive

