Plant Tissues, Organs, and Systems

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641

Subject: Biology

Exam board: GCSE AQA

Topic: Plant Tissues, Organs, and Systems

Q1.

Plants are made up of cells, tissues and organs.
(a) Draw one line from each level of organisation to the correct plant part.

Level of organisation
Plant part

\square
Organ

Spongy mesophyll

Xylem

Figure 1 shows a plant cell drawn to scale.
Figure 1

(b) Where in a plant would the cell in Figure 1 be found?

Tick one box.
Epidermis
(c) Calculate the length of the chloroplast labelled in Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Length = \qquad micrometres
(d) Cells in plant roots do not photosynthesise.

Give one reason why.
\qquad
\qquad
\qquad
\qquad
(e) As a plant grows, new root hair cells are formed from unspecialised cells.

How does an unspecialised cell become a new root hair cell?
Tick one box.

Differentiation \square

For more help, please our website www.exampaperspractice.co.uk

Metabolism \square

Transpiration

Transport

Scientists can clone plants using tissue culture.
Figure 2 shows the process of tissue culture.
Figure 2

(f) Why might scientists want to clone plants?

Tick one box.

To create new species of plants. \square

To introduce variation into plants. \square

To protect endangered plants from extinction. \square

To reduce disease resistance in plants. \square
(g) What is the advantage of cloning plants using tissue culture?

For more help, please our website www.exampaperspractice.co.uk

Tick one box.

No special equipment is needed. \square

Plants can be produced quickly. \square

The flowers are all different colours. \square

The offspring are all genetically different. \square
(h) The growth medium in Figure 2 helps the plants to grow.

Name one substance in the growth medium.
\qquad
\qquad
\qquad
\qquad

Q2.
Aphids are small insects that carry pathogens.
Figure 1 shows an aphid feeding from a plant stem.
Figure 1

(a) An aphid feeds by inserting its sharp mouthpiece into the stem of a plant.

For more help, please our website www.exampaperspractice.co.uk

After feeding, the mouthpiece of an aphid contains a high concentration of dissolved sugars.

Which part of the plant was the aphid feeding from?
Tick one box.

(b) What is the process that transports dissolved sugars around a plant?

Tick one box.

Filtration

Respiration

Translocation

Transpiration

(c) Plants infected with aphids have stunted growth.

Explain one way the removal of dissolved sugars from the stem of the plant causes stunted growth.
\qquad
-
\qquad
-
\qquad
——
(d) Most aphids do not have wings when they hatch. After several generations, some aphids hatch which have wings and can fly.

Explain the advantage to the aphid of being able to fly.
\qquad
(e) The leaves of some plants release oils onto their surface.

Suggest how the production of oil on the surface of a leaf may protect the plant from aphids.
\qquad
\qquad
\qquad
\qquad

Figure $\mathbf{2}$ shows part of a rose plant.
Figure 2

(f) Give one adaptation shown in Figure 2 that helps the rose plant defend itself.
\qquad
\qquad
\qquad
-

Figure 3 shows a plan of a garden containing rose plants.
Figure 3

(g) Plant \mathbf{A} has the fungal disease rose black spot.

Which plant in Figure $\mathbf{3}$ is the fungus likely to spread to first?
Give a reason for your answer.
Plant \qquad

For more help, please our website www.exampaperspractice.co.uk

Reason
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(h) Suggest one way the gardener could reduce the spread of rose black spot to the other plants in the garden.
\qquad
\qquad
\qquad

Q3.
Plants can be infected by fungi, viruses and insects.
Aphids are small insects that carry pathogens.
The diagram below shows an aphid feeding from a plant stem.

(a) An aphid feeds by inserting its sharp mouthpiece into the stem of a plant.

Give the reason why the mouthpiece of an aphid contains a high concentration of dissolved sugars after feeding.

For more help, please our website www.exampaperspractice.co.uk
\qquad
-
\qquad
\qquad
(b) Plants infected with aphids may show symptoms of magnesium deficiency.

Magnesium deficiency symptoms include:

- yellow leaves
- stunted growth.

Explain how a deficiency of magnesium could cause these symptoms.
\qquad
(c) A farmer thinks a potato crop is infected with potato virus Y (PVY).

The farmer obtains a monoclonal antibody test kit for PVY.
To make the monoclonal antibodies a scientist first isolates the PVY protein from the virus.

Describe how the scientist would use the protein to produce the PVY monoclonal antibody.
\qquad
-
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
-
\qquad

\qquad

\qquad

\qquad
-
\qquad
\qquad

Q4.
Animals and plants contain organs and tissues.
Figure 1 shows some organs in the human thorax.

Figure 1

(a) Name parts A, B and C.

A \qquad
B
C \qquad
(b) Which organ system is the heart part of?

Tick one box.

Breathing system \square

Circulatory system \square

Digestive system

Excretory system \square

Figure 2 shows a cross section of a leaf.

Figure 2

T
(c) In which part of the leaf does most photosynthesis take place?

Tick one box.
P

Q \square
R \square
\square
(d) What is part T?

Tick one box.

Guard cell \square

Phloem \square

Stoma \square

For more help, please our website www.exampaperspractice.co.uk
(e) A leaf is an organ made of tissues.

What is a tissue?
\qquad
\qquad
\qquad
\qquad
(f) Draw one line from each tissue to its function.

Tissue

Spongy mesophyll

Function

Allows diffusion of gases through the leaf

Allows light through to the photosynthesising parts of the leaf

Allows water into the leaf

Transport sugars around the plant

Transports water around the plant

Q5.
The image below shows part of a root from a cress plant.

(a) What type of microscope was used to create the image above?
\qquad
\qquad
(b) The magnification of the cress root in the image above is $\times 200$.

There are 1000 micrometres $(\mu \mathrm{m})$ in a millimetre (mm).
Calculate the real length of the root hair, \mathbf{X}.
Give your answer in micrometres ($\mu \mathrm{m}$).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Real length $\mathbf{X}=$ \qquad $\mu \mathrm{m}$
(c) Root hair cells take up water from the soil.

Explain one way in which the root hair cell is adapted to this function.
\qquad
\qquad
-
\qquad
-
\qquad
——

The table shows the water uptake by a plant's roots on two different days.

	Mean water uptake in $\mathbf{c m}^{\mathbf{3}}$ per hour
Cold day	1.8
Hot day	3.4

(d) Explain why the mean rate of water uptake is higher on a hot day than on a cold day.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
——
\qquad
-
(e) The concentration of mineral ions in the soil is lower than in root hair cells.

Root hair cells take up mineral ions from the soil.
Root hair cells contain mitochondria.
Explain why root hair cells contain mitochondria.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
A student carried out an investigation using leaf epidermis.
This is the method used.

1. Peel the lower epidermis from the underside of a leaf.
2. Cut the epidermis into six equal sized pieces.
3. Place each piece of lower epidermis into a different Petri dish.
4. Add $5 \mathrm{~cm}^{3}$ of salt solution to the six Petri dishes. Each Petri dish should have a different concentration of salt solution.
5. After 1 hour, view each piece of epidermis under a microscope at $\times 400$ magnification.
6. Count and record the total number of stomata present and the number of open stomata that can be seen in one field of view.

The student's results are shown in the table.

Concentratio n of salt solution in mol $/ \mathbf{d m}^{3}$	Number of stomata in field of view	Number of open stomata in field of view	Percentage (\%) of open stomata in field of view
0.0	7	7	100
0.1	8	8	100

For more help, please our website www.exampaperspractice.co.uk

0.2	7	6	\mathbf{X}
0.3	9	6	67
0.4	10	4	40
0.5	9	2	22

(a) Calculate value \mathbf{X} in the table above.
\qquad
\qquad
\qquad
\qquad
\qquad \%
(b) Give one conclusion from the results in the table above.
\qquad
\qquad
\qquad
\qquad
(c) How could the student find out what concentration of salt solution would result in half of the stomata being open?
\qquad
\qquad
\qquad
-
(d) The student measured the real diameter of the field of view to be 0.375 mm .

Calculate the number of open stomata per mm^{2} of leaf for the epidermis placed in $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$ salt solution.

Use information from the table above.

Take π to be 3.14
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
-
\qquad
\qquad
\qquad
-
\qquad

Number of open stomata $=$ \qquad per mm²
(e) The diagram below shows two guard cells surrounding a closed stoma and two guard cells surrounding an open stoma.

When light intensity is high potassium ions are moved into the guard cells.
Describe how the movement of potassium ions into the guard cells causes the stoma to open.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-

Q7.

Plants transport water and mineral ions from the roots to the leaves.
(a) Plants move mineral ions:

- from a low concentration in the soil
- to a high concentration in the root cells.

What process do plants use to move these minerals ions into root cells?

Tick one box.

(b) Describe how water moves from roots to the leaves.
\qquad
\qquad
-
\qquad
-
(c) Plants lose water through the stomata in the leaves.

The epidermis can be peeled from a leaf.
The stomata can be seen using a light microscope.
The table below shows the data a student collected from five areas on one leaf.

Leaf area	Number of stomata	
	Upper surface	Lower surface
1	3	44
2	0	41
3	1	40
4	5	42
5	1	39
Mean	$\mathbf{2}$	\mathbf{X}

Describe how the student might have collected the data.
\qquad
-
\qquad
\qquad
\qquad
——
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(d) What is the median number of stomata on the upper surface of the leaf?
\qquad
\qquad
(e) Calculate the value of \mathbf{X} in the table.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
Mean number of stomata on lower surface of leaf $=$
(f) The plant used in this investigation has very few stomata on the upper surface of the leaf.

Explain why this is an advantage to the plant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.
Tobacco mosaic virus (TMV) is a disease affecting plants.

The diagram below shows a leaf infected with TMV.

(a) All tools should be washed in disinfectant after using them on plants infected with TMV.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(b) Scientists produced a single plant that contained a TMV-resistant gene.

Suggest how scientists can use this plant to produce many plants with the TMV-resistant gene.
\qquad
\qquad
\qquad
\qquad
(c) Some plants produce fruits which contain glucose.

Describe how you would test for the presence of glucose in fruit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
(d) TMV can cause plants to produce less chlorophyll.

This causes leaf discoloration.
Explain why plants with TMV have stunted growth.
\qquad

Q9.

Carbon dioxide enters a plant through stomata on the leaves.
(a) Name the cells that control the size of the stomata.
\qquad
(b) Scientists grew tomato plants in air containing different concentrations of carbon dioxide.

The scientists recorded the number of stomata found on the lower surface of the leaves of plants grown at each carbon dioxide concentration.

The graph below shows the results.

Mean number of stomata on lower surface of leaf per mm ${ }^{2}$

(i) Describe the relationship between the mean number of stomata per mm² and carbon dioxide concentration.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the relationship you described in part (b)(i).
\qquad
\qquad
\qquad
\qquad
(c) (i) Suggest one disadvantage to a plant of having a large number of stomata per mm^{2} on each leaf.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest one environmental condition where a large number of stomata per mm^{2} on each leaf would be a disadvantage.
\qquad
\qquad
\qquad
\qquad

Q10.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Plants transport many substances between their leaves and roots.
The diagram below shows the direction of movement of substances through a plant.

Describe how ions, water and sugar are obtained and transported through plants.
In your answer you should refer to materials moving upwards in a plant and to materials moving downwards in a plant.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad

\qquad

\qquad

\qquad
\qquad
(Total 6 marks)

Q11.
A potometer is a piece of apparatus that can be used to measure water uptake by a leafy shoot.

Figure 1 shows a potometer.
Figure 1

Some students used a potometer like the one shown in Figure 1.

- They measured the water taken up by a shoot in normal conditions in a classroom.
- As the water was taken up by the shoot, the level of water in the capillary tube went down.
- The students recorded the level of the water in the capillary tube at 2-minute intervals for 10 minutes.

Table 1 shows the students' results.
Table 1

Time in minutes	0	2	4	6	8	10
Level of water (on scale) in capillary tube in mm	2.5	3.6	4.4	5.4	6.5	7.5

The area of the cross section of the capillary tube was $0.8 \mathrm{~mm}^{2}$.
(a) (i) Complete the following calculation to find the volume of water taken up by the shoot in mm^{3} per minute.

Distance water moved along the scale in 10 minutes $=$ \qquad mm

For more help, please our website www.exampaperspractice.co.uk

Volume of water taken up by the shoot in 10 minutes $=$ \qquad mm^{3}

Therefore, volume of water taken up by the shoot in 1 minute $=$ \qquad mm^{3}
(ii) The students repeated the investigation but this time placed the potometer next to a fan blowing air over the leafy shoot.

Suggest how the results would be different. Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The students repeated the investigation at different temperatures.

The results are shown in Table 2.
Table 2

Temperature in ${ }^{\circ} \mathbf{C}$	Rate of water uptake in $\mathbf{~ m m ~}^{3}$ per minute
10	0
15	0.4
20	1.0
25	2.1
30	3.2
35	4.0
40	4.4

Plot the data from Table 2 on the graph paper in Figure 2.

Choose suitable scales, label both axes and draw a line of best fit.
Figure 2

(c) What would happen to the leaves if the potometer was left for a longer time at $40^{\circ} \mathrm{C}$?

Explain your answer.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Q12.

Plants need different substances to survive.
Figure 1 shows the roots of a plant.

Figure 1

(a) (i) Mineral ions are absorbed through the roots.

Name one other substance absorbed through the roots.
\qquad
\qquad
(ii) The plant in Figure 1 has a higher concentration of mineral ions in the cells of its roots than the concentration of mineral ions in the soil.

Which two statements correctly describe the absorption of mineral ions into the plant's roots?

Tick (\checkmark) two boxes.

The mineral ions are absorbed by active transport.

The mineral ions are absorbed by diffusion.

The mineral ions are absorbed down the concentration gradient.

The absorption of mineral ions needs energy.
(iii) The plant in Figure 1 has roots adapted for absorption.

Figure 2 shows a magnified part of a root from Figure 1.
Figure 2

Describe how the root in Figure $\mathbf{2}$ is adapted for absorption.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The leaves of plants have stomata.

What is the function of the stomata?
\qquad
\qquad
\qquad
\qquad
(c) Figure 3 shows the underside of two leaves, \mathbf{A} and \mathbf{B}, taken from a plant in a man's house.

For more help, please our website www.exampaperspractice.co.uk

Figure 3

(i) In Figure 3, the cells labelled \mathbf{X} control the size of the stomata.

What is the name of the cells labelled \mathbf{X} ?
Tick (\checkmark) one box.

Guard cells

Phloem cells

Xylem cells

(ii) Describe how the appearance of the stomata in leaf \mathbf{B} is different from the appearance of the stomata in leaf \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
(iii) The man forgets to water the plant.

What might happen to the plant in the next few days if the stomata stay

For more help, please our website www.exampaperspractice.co.uk
the same as shown in leaf \mathbf{A} in Figure 3?
\qquad
\qquad
\qquad
\qquad

Q13.

Diagram 1 shows a section through the heart.

Diagram 1

(a) Use words from the box to name the structures labelled \mathbf{A} and \mathbf{B} on Diagram 1.

aorta	atrium	pulmonary artery	ventricle

A
B \qquad
(2)
(b) The tissue in the wall of the heart contracts.
(i) What type of tissue is this?

Tick (\checkmark) one box.
muscular \square
glandular \square
epithelial \square
(ii) What does the heart do when this tissue contracts?
\qquad
\qquad
\qquad
(c) Draw arrows on Diagram 2 to complete the route taken by deoxygenated blood through the heart.

Diagram 2

(d) The graph shows the percentage (\%) of adults in the UK who have coronary heart disease.

(i) Look at the graph.

Which group of people is most at risk of having coronary heart disease in the UK?
\qquad
\qquad
(ii) Explain what happens to the heart in coronary heart disease.
\qquad

For more help, please our website www.exampaperspractice.co.uk

Q14.
The image below shows some cells on the lower surface of a leaf.

(a) What are the cells labelled \mathbf{X} called?

Draw a ring around the correct answer.
guard cells
palisade cells
mesophyll cells
(b) Water loss by evaporation from leaves is called transpiration.

A student set up an experiment to investigate water loss from leaves.
The student:

- took two leaves, \mathbf{A} and \mathbf{B}, from a plant
- put Vaseline (grease) on both sides of Leaf B; did nothing to Leaf A
- wrote down the mass of each leaf
- attached the leaves onto a string as shown in the diagram below.

- left the leaves for 48 hours
- wrote down the mass of each leaf again
- calculated the percentage (\%) change in mass for each leaf.
(i) Give one variable that the student controlled in this investigation.
\qquad
\qquad
\qquad
\qquad
(ii) The mass of Leaf A was 1.60 g at the start of the investigation. After 48 hours it was 1.28 g .

Calculate the \% decrease in mass over 48 hours.
\qquad
\qquad
\qquad
\qquad

> \% decrease =
\qquad

For more help, please our website www.exampaperspractice.co.uk
(c) Vaseline blocks the stomata.

The \% change in mass of Leaf B was less than Leaf A after 48 hours.
Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Give three environmental conditions that would increase transpiration.
1.
\qquad
2.
\qquad

3
\qquad
\qquad
(3)
(Total 8 marks)

Q15.

The diagram below shows a cross-section of a plant root. The transport tissues are labelled.

For more help, please our website www.exampaperspractice.co.uk
(a) (i) What is tissue \mathbf{A} ?

Draw a ring around the correct answer.
cuticle epidermis xylem
(ii) Name two substances transported by tissue A.
1.
\qquad

2.
\qquad
\qquad
(b) Phloem is involved in a process called translocation.
(i) What is translocation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain why translocation is important to plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Plants must use active transport to move some substances from the soil into root hair cells.
(i) Active transport needs energy.

For more help, please our website www.exampaperspractice.co.uk

Which part of the cell releases most of this energy?
Tick (\checkmark) one box.

(ii) Explain why active transport is necessary in root hair cells.
\qquad

Q16.
(a) Dodder is an unusual flowering plant. It is a parasite.

The dodder plant:

- has no chlorophyll
- has no roots
- has no leaves
- grows attached to the stem of a host plant.

For more help, please our website www.exampaperspractice.co.uk

The image below shows dodder attached to its host plant.

© yogesh_more/iStock/Thinkstock
(i) Dodder has no chlorophyll. Most plants have leaves containing chlorophyll.

What is the function of chlorophyll in most plants?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Parts of the dodder stem grow into the host stem and attach to the host's phloem tissue.

Suggest why it is helpful to the dodder plant to be attached to the host's phloem tissue.
\qquad
\qquad
\qquad
\qquad
(iii) Suggest why the dodder will have a harmful effect on the host plant.
\qquad
\qquad
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The tapeworm is another parasite.
The image below shows part of a tapeworm.

© Science Photo Library
The tapeworm lives inside the small intestine of a mammal.
Describe and explain how the tapeworm is adapted for living inside the small intestine of its host.
\qquad

Extra space
\qquad
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad -

Q17.

Substances are transported through plants.
(a) Use the correct answer from the box to complete each sentence.

capillary	guard cells	phloem
stomata	transpiration	xylem

(i) Water is transported from the roots to the stem of a plant in the \qquad .
(ii) Dissolved sugars are transported through the plant in the \qquad .
(iii) Movement of water through the plant is called the
\qquad stream.
(iv) Water vapour moves out of the plant through pores called \qquad .
(b) Students investigated the effect of different conditions on water loss from leaves.

The apparatus is shown in Figure 1.
Figure 1

The students set up four flasks, A, B, C and D.

The students:

- used the same size plant shoot in each flask
- recorded the mass of the flask and plant shoot at the start of each experiment
- left each flask and plant shoot in different conditions
- recorded the mass of each flask and plant shoot after 2 hours.

Table 1 shows the conditions that flasks $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} were left in for 2 hours.
Table 1

Flask	Temperature in $^{\circ} \mathbf{C}$	Fan or no fan
A	20	No Fan
B	20	Fan
C	35	No Fan
D	35	Fan

(i) Suggest why the students used cotton wool in each flask.
\qquad
\qquad
\qquad
\square
(ii) The use of the same size of plant shoot made the investigation a fair test.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
(2)
(iii) Table 2 shows the students' results.

Table 2

	Conditions		Mass at the start in grams	Mass after 2 hours in grams	Mass of water lost in 2 hours in grams
Flask	Temperature in ${ }^{\circ}$ C	Fan or no fan	No Fan	150.0	148.1
A	20	Fan	152.0	148.5	1.9
B	20	No Fan	149.0	145.9	3.5
C	35	Fan	150.0	145.5	
D	35				

What mass of water was lost by the plant shoot in flask \mathbf{D} ?
\qquad
\qquad
\qquad
\qquad
\qquad
(1)
(iv) Suggest what conclusion can be made about the effect of temperature on water loss from the plant shoot.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(v) Suggest what conclusion can be made about the effect of the fan on water loss from the plant shoot.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
-
(c) The students carried out another experiment at $20^{\circ} \mathrm{C}$, with no fan.

The students used the apparatus in Figure 2.
Figure 2

In this experiment, the students:

- recorded the mass of the flask and plant shoot before tying the plastic bag around the plant shoot
- removed the bag after 2 hours and recorded the mass again.
(i) What mass of water would be lost from the plant shoot in 2 hours?

Draw a ring around the correct answer.
0.3 g
1.9 g
3.9 g
(ii) Give a reason for your answer to part (c)(i).
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad

Q18.
Plant roots absorb water from the soil by osmosis.
(a) What is osmosis?
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
(b) The image below shows part of a plant root.

The plant root is adapted for absorbing water from the soil.

Use information from the diagram to explain how this plant root is adapted for absorbing water.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
-

Q19.
The leaves of most plants have stomata.
(a) (i) Name the cells which control the size of the stomata.
\qquad
\qquad
(ii) Give one function of stomata.
\qquad
\qquad
\qquad
\qquad
(b) The image below shows part of the surface of a leaf.

The length and width of this piece of leaf surface are both 0.1 mm .
(i) Calculate the number of stomata per mm^{2} of this leaf surface.
\qquad
\qquad
\qquad
\qquad
\qquad per mm ${ }^{2}$
(ii) A different plant species has 400 stomata per mm^{2} of leaf surface.

Having a large number of stomata per mm^{2} of leaf surface can be a disadvantage to a plant.

Give one disadvantage.
\qquad
\qquad
\qquad
\qquad
(c) A student investigated the loss of water from plant leaves.

The student did the following:

- Step 1: took ten leaves from a plant
- \quad Step 2: weighed all ten leaves

For more help, please our website www.exampaperspractice.co.uk

- \quad Step 3: hung the leaves up in a classroom for 4 days
- \quad Step 4: weighed all ten leaves again
- \quad Step 5: calculated the mass of water lost by the leaves
- Step 6: repeated steps 1 to 5 with grease spread on the upper surfaces of the leaves
- Step 7: repeated steps 1 to 5 with grease spread on both the upper and lower surfaces of the leaves.

All the leaves were taken from the same type of plant.
The table below shows the student's results.

Treatment of leaves	Mass of water the leaves lost in \mathbf{g}
No grease was used on the leaves	0.98
Grease on upper surfaces of the leaves	0.86
Grease on upper and lower surfaces of the leaves	0.01

(i) What mass of water was lost in 4 days through the upper surfaces of the leaves?
\qquad
\qquad
\qquad
\qquad

$$
\text { Mass }=\ldots \mathrm{g}
$$

(ii) Very little water was lost when the lower surfaces of the leaves were covered in grease.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.

Some students investigated the effect of light intensity on the rate of photosynthesis.
They used the apparatus shown in Diagram 1.
Diagram 1

The students:

- placed the lamp 10 cm from the pondweed
- counted the number of bubbles of gas released from the pondweed in 1 minute
- repeated this for different distances between the lamp and the pondweed.
(a) The lamp gives out heat as well as light.

What could the students do to make sure that heat from the lamp did not affect the rate of photosynthesis?

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
-
(b) The table shows the students' results.

Distance in cm	Number of bubbles per minute
10	84
15	84
20	76
40	52
50	26

(i) At distances between 15 cm and 50 cm , light was a limiting factor for photosynthesis.

What evidence is there for this in the table?
\qquad
\qquad
\qquad
\qquad
(ii) Give one factor that could have limited the rate of photosynthesis when the distance was between 10 cm and 15 cm .
\qquad
\qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Diagram 2 shows a section through a plant leaf.

Diagram 2

For more help, please our website www.exampaperspractice.co.uk

Describe the structure of the leaf and the functions of the tissues in the leaf.
You should use the names of the tissues in your answer.
\qquad
\qquad
\qquad -
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad

Q21.

Some students used the apparatus shown in the diagram to measure the rate of water uptake by a plant cutting.

The students set up the apparatus in three different conditions:

- no wind at $15^{\circ} \mathrm{C}$
- no wind at $25^{\circ} \mathrm{C}$
- wind at $25^{\circ} \mathrm{C}$

For each experiment, the students recorded the movement of the air bubble along the scale.
(a) (i) Name the two variables the students chose to change in these experiments.
1.

For more help, please our website www.exampaperspractice.co.uk
2.
\qquad
\qquad
(2)
(ii) It was important to use the same plant cutting each time to make these experiments fair.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The graph shows the students' results.

Which line on the graph, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows the results for each of the three different experiments?

Write each of the letters, \mathbf{A}, \mathbf{B} and \mathbf{C}, in the correct boxes in the table.

Conditions	Letter
No wind at $15^{\circ} \mathrm{C}$	

For more help, please our website www.exampaperspractice.co.uk

No wind at $25^{\circ} \mathrm{C}$	
Wind at $25^{\circ} \mathrm{C}$	

(c) Water is lost from the leaves of the plant cutting.

Name this process.
Draw a ring around one answer.

$$
\text { distillation } \quad \text { respiration } \quad \text { transpiration }
$$

Q22.

Plant leaves have many stomata.
The diagram shows a stoma.

(a) Name cell \mathbf{X} \qquad
(b) The table shows the mean widths of the stomata at different times of the day for two different species of plant.
Species A grows in hot, dry deserts.
Species B grows in the UK.

Time of day in hours	Mean width of stomata as a percentage of their maximum width	
	Species A	Species B

EXAM PAPERS PRACTICE

Dark	0	95	5
	2	86	5
	4	52	6
Light	6	6	40
	8	4	92
	10	2	98
	12	1	100
	14	0	100
	16	1	96
	18	5	54
Dark	20	86	6
	22	93	5
	24	95	5

The data in the table show that species \mathbf{A} is better adapted than species \mathbf{B} to living in hot, dry deserts.

Explain how.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
(4)
(Total 5 marks)

Q23.

The diagram shows a section through a plant leaf.

B
(a) Use words from the box to name two tissues in the leaf that transport substances around the plant.

epidermis	mesophyll	phloem	xylem

\qquad and
\qquad
(b) Gases diffuse between the leaf and the surrounding air.
(i) What is diffusion?
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Name one gas that will diffuse from point \mathbf{A} to point \mathbf{B} on the diagram on a sunny day.
\qquad
\qquad

Q24.
Plants exchange substances with the environment.
(a) Use words from the box to complete each sentence.

| alveoli phloem | root hairs | stomata |
| :---: | :---: | :--- | :--- |
| storage organs | villi | xylem |

(i) Most water enters a plant through
(ii) The water is transported up the stem to the leaves in the
\qquad
(iii) Carbon dioxide enters leaves through
\qquad
(iv) A leaf uses the carbon dioxide to produce sugars.

Sugars are transported to \qquad through the \qquad .
(b) A student set up the apparatus shown in the diagram.

At the start of the experiment both balances showed a mass of 180.0 g .

The diagram shows the reading on each balance 24 hours later.
(i) Look at the mass shown on each balance.

Calculate the difference between the two masses.
\qquad
\qquad
\qquad
\qquad
Difference in mass = \qquad g
(ii) Suggest an explanation for the difference between the two masses.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q25.
Plants exchange substances with the environment.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(a) Plant roots absorb water mainly by osmosis.

Plant roots absorb ions mainly by active transport.
Explain why roots need to use the two different methods to absorb water and ions.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
(b) What is meant by the transpiration stream?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ——
\qquad ——
(c) Students investigated the loss of water vapour from leaves.

The students:

- cut some leaves off a plant
- measured the mass of these leaves every 30 minutes for 180 minutes.

The graph shows the students' results.

(i) The rate of mass loss in the first 30 minutes was 7 milligrams per gram of leaf per minute.

Calculate the rate of mass loss between 30 minutes and 180 minutes.
\qquad
\qquad
\qquad
\qquad
Rate of mass loss = \qquad milligrams per gram of leaf per minute
(ii) The rate of mass loss between 0 and 30 minutes was very different from the rate of mass loss between 30 and 180 minutes.

Suggest an explanation for the difference between the two rates.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.

Plants lose water vapour from their leaves. Most of this water vapour is lost through the stomata.
(a) Draw a ring around the correct answer to complete the sentence.

Plants lose water vapour by | | distillation. |
| :--- | :--- |
| filtration. | |
| transpiration. | |

(b) A class of students investigated the number of stomata per mm^{2} on the upper surface and on the lower surface of the leaves of three species of plant, \mathbf{P}, \mathbf{Q} and \mathbf{R}.

The students placed samples of the surface cells onto a grid on a microscope.
Student \mathbf{X} counted the stomata on the lower surface of a leaf from one of the plant species.

The diagram shows part of the grid that student \mathbf{X} saw under the microscope.

Area of this square $=\frac{1}{25} \mathrm{~mm}^{2}$

(i) Complete the calculation to estimate the number of stomata per mm^{2} on the lower surface of this leaf.

Number of stomata in ${ }^{\frac{1}{25}} \mathrm{~mm}^{2}=$
Number of stomata in $1 \mathrm{~mm}^{2}=$ \qquad

The table shows the mean results for the class.

Plant species	Mean number of stomata per $\mathbf{~ m m}^{2}$ of leaf	
	Upper surface of leaf	Lower surface of leaf
\mathbf{P}	40	304
\mathbf{Q}	0	11
\mathbf{R}	85	195

(ii) Student \mathbf{X} had counted the stomata on the lower surface of a leaf from one of the plant species.

Use your answer to part (b)(i), and information in the table, to help you to answer this question.

From which plant species, P, Q or R, was student X's leaf most likely to have
\square

For more help, please our website www.exampaperspractice.co.uk
(iii) Species \mathbf{Q} is normally found growing in hot, dry conditions.

Explain one way in which species \mathbf{Q} is adapted for living in hot, dry conditions.

Use information from the table.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2)
(Total 6 marks)

Q27.

The graph shows the rate of transpiration from a plant at different times of the day.

Transpiration occurs mainly in the leaves of a plant.
(a) (i) What is transpiration?
\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad
\qquad
(ii) Through which part of a leaf does most transpiration occur?
\qquad
\square
(b) In this investigation, the rate of transpiration decreases between 16:00 hours

For more help, please our website www.exampaperspractice.co.uk
and 19:00 hours.
(i) Calculate the average rate of decrease per hour in the rate of transpiration over this time.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rate $=$ \qquad arbitrary units per hour
(ii) Suggest one explanation for the decrease in the rate of transpiration between 16:00 hours and 19:00 hours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q28.
(a) Draw a ring around the correct answer to complete the sentence.

A plant loses water from its leaves by a process called
distillation.
respiration.
transpiration.
(1)

For more help, please our website www.exampaperspractice.co.uk
(b) Some scientists investigated the effect of temperature on water loss from a plant.

The graph shows the results.

Describe the effect of increasing the temperature on water loss from the plant.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
(c) Under different conditions, plants open or close their stomata.
(i) How does closing its stomata help a plant?
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
(ii) In the investigation described in part (b), which temperature range would cause most of the stomata to close?

Draw a ring around one answer.

$$
25-30{ }^{\circ} \mathrm{C} \quad 30-35^{\circ} \mathrm{C} \quad 40-45^{\circ} \mathrm{C}
$$

Q29.

Some students used the apparatus shown in the diagram to measure the rate of water uptake by a plant cutting.

The students set up the apparatus in three different conditions:

- no wind at $15^{\circ} \mathrm{C}$
- no wind at $25^{\circ} \mathrm{C}$
- wind at $25^{\circ} \mathrm{C}$

For each experiment, the students recorded the movement of the air bubble along the scale.

For more help, please our website www.exampaperspractice.co.uk
(a) (i) Name the two variables that the students chose to change in these experiments.
1.
\qquad
2.
\qquad
\qquad
(ii) It was important to use the same plant cutting each time to make these experiments fair.

Explain why.
\qquad
\qquad
(b) The graph shows the students' results.

Which line on the graph, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows the results for each of the three different experiments?

Write each of the letters \mathbf{A}, \mathbf{B} or \mathbf{C} in the correct boxes in the table.

For more help, please our website www.exampaperspractice.co.uk

Condition	Letter
No wind at $15^{\circ} \mathrm{C}$	
No wind at $25^{\circ} \mathrm{C}$	
Wind at $25^{\circ} \mathrm{C}$	

(c) Water is lost from the leaves of the plant cutting.

Name this process.
Draw a ring around one answer.

distillation

respiration
transpiration
(Total 6 marks)

Q30.
Leaves are made from layers of cells.
The diagram shows a section through part of a leaf.

(a) (i) Which word in the table describes layer \mathbf{A} ?

Tick (\checkmark) one box.

Layer A	Tick (\checkmark)
Tissue	
Organ	
Cell	

(ii) Which word describes a whole leaf?

Draw a ring around one answer.
organ
tissue
organism
(b) (i) Which two layers of cells, A, B, C and D, can photosynthesise? Use information from the diagram to help you.

Tick (\checkmark) two boxes.

Layer A

Layer B

Layer C

Layer D

(ii) Give one reason for your answer.
\qquad
\qquad
\qquad
\qquad
(c) List \mathbf{X} gives the names of two parts of a cell.

List \mathbf{Y} gives information about parts of a cell.
Draw one line between each part of the cell in list \mathbf{X} and information about it in list \mathbf{Y}.

List X Part of a cell

Information

Controls the passage of substances into the cell

Vacuole

Nucleus

Controls the activities of the whole cell

Q31.

The diagram shows a section through a plant leaf.

(a) The cells labelled \mathbf{X} surround a stoma (pore).

Draw a ring around the correct answer to complete the sentence.

Cells \mathbf{X} are called	alveoli.
guard cells.	
villi.	

(b) Water vapour is lost from leaves. Water loss causes a leaf to lose mass.

The graph shows how the masses of leaves from two plant species, \mathbf{P} and \mathbf{Q}, changed over several hours. Both leaves were kept in the same conditions.

For more help, please our website www.exampaperspractice.co.uk
(ii) What was the difference between the mass of the leaf of species \mathbf{P} and the mass of the leaf of species \mathbf{Q} after 5 hours?
\qquad
(iii) The leaf of species \mathbf{Q} lost water at a faster rate than the leaf of species P.
Suggest one reason why.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
(iv) Which weather conditions would cause the greatest rate of loss of mass for both species \mathbf{P} and species \mathbf{Q} ?

Tick (\checkmark) one box in the table.

Weather conditions		
Still air or wind	Temperature in ${ }^{\circ} \mathrm{C}$	
Wind	30	
Still air	30	
Wind	20	

(c) Draw a ring around the correct answer to complete the sentence.

In very hot, dry conditions, the stomata close.

This is to prevent \begin{tabular}{l|l|}

\& | anaerobic respiration. |
| :--- |
| breathing. |
| wilting. |

\hline
\end{tabular}

Q32.
A student removed three similar leaves from a plant. The student spread petroleum jelly (a waterproofing substance) on some of the leaves, as follows:

Leaf A : on the lower surface
Leaf B: on the upper surface
Leaf C: none.
The student placed each leaf in a separate beaker. He weighed each beaker at intervals. The results are shown in the table.

Time	Mass of leaf + beaker in grams

in hours	Leaf A	Leaf B	Leaf C
0	50.00	55.01	51.99
0	49.99	54.95	51.90
3	49.97	54.90	51.85
5	49.95	54.86	51.80

) Which leaf, A, B or \mathbf{C}, lost most water? \square
(b) The diagram shows the appearance of the upper and lower surfaces of one of the leaves under a microscope.

(i) Name cell \mathbf{X}.
(ii) The petroleum jelly had a greater effect when it was spread on the lower surface than when it was spread on the upper surface.

Use information from the diagram to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad

Q33.

The diagram shows part of a plant root. A large number of structures like the ones labelled \mathbf{X} grow out of the surface of the root.

(a) (i) What is the name of structure \mathbf{X} ?

Draw a ring around one answer.

root hair

stoma
villus
(ii) Name two substances which structure \mathbf{X} absorbs from the soil.
1.
2.
\qquad
\qquad
(b) The substances in (a)(ii) are transported from the roots to the leaves. Carbon dioxide also enters the leaves.

Draw a ring round the correct answer to complete each sentence.
alveoli.

For more help, please our website www.exampaperspractice.co.uk

| (i) Carbon dioxide enters leaves through | $\begin{array}{l}\text { stomata. } \\ \text { villi. }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (ii) Carbon dioxide enters leaf cells by | $\begin{array}{l}\text { active transport. } \\ \text { diffusion. } \\ \text { reabsorption. }\end{array}$ |

(1)
(1)
(Total 5 marks)

Q34.
(a) Name the process by which water is lost from plant leaves.
\qquad
\qquad
(b) Some students set up the apparatus shown in the diagram to measure the water loss from a potted plant.

The apparatus was placed in different environmental conditions:
A in still air at $20^{\circ} \mathrm{C}$.
B in still air at $25^{\circ} \mathrm{C}$.
C in a wind at $20^{\circ} \mathrm{C}$.
D in a wind at $25^{\circ} \mathrm{C}$.
Readings from the balance were recorded by a datalogger at 10-minute
intervals.
The results are given in the table.

Time in minutes	Balance reading in grams			
	A	B	C	D
0	285.6	284.6	282.9	280.9
10	285.3	284.2	282.4	280.2
20	284.9	283.8	281.9	279.4
30	284.7	283.4	281.4	278.8

(i) Under which conditions, A, B, C or D, was water lost most rapidly?
\square
(ii) Explain, as fully as you can, why water was lost most rapidly under these conditions.
\qquad
(2)
(Total 4 marks)

Q35.
Plant leaves have many stomata.
The diagram shows a stoma.

For more help, please our website www.exampaperspractice.co.uk

(a) Name cell \mathbf{X} \qquad
(b) The table shows the mean widths of the stomata at different times of the day for two different species of plant.
Species A normally grows in hot, dry deserts.
Species B grows in the UK.

	Time of day in hours	Mean width of stomata as a percentage of their maximum width	
		Species A	Species B
	0	95	5
Dark	2	86	5
	4	52	6
Light	6	6	40
	8	4	92
	10	2	98
	12	1	100
	14	0	100
	16	1	96
	18	5	54
Dark	20	86	6
	22	93	5

For more help, please our website www.exampaperspractice.co.uk

| 24 | 95 | 5 |
| :--- | :--- | :--- | :--- |

The data in the table show that species \mathbf{A} is better adapted than species \mathbf{B} to living in hot, dry deserts.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.
(a)

additional line from a level of organisation negates the mark for that level of organisation
(b) palisade mesophyll
(c) $\frac{50}{8}$

6 / 6.25 / 6.3 (micrometres)
an answer of 6 / 6.25 / 6.3 scores 2 marks
(d) they have no chloroplasts / chlorophyll
allow they are underground
allow they don't get (access to) light
allow (because) photosynthesis needs light
allow they can't absorb light
ignore 'sun'
ignore 'it is dark'
(e) differentiation
(f) to protect endangered plants from extinction
(g) plants can be produced quickly
(h) any one from:

- glucose / sugars / starch
- amino acids / protein
- hormones
allow named hormones e.g. auxin
- ions / minerals
allow magnesium / nitrate
- vitamins
allow named vitamins e.g. vitamin B
- water
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
ignore oxygen / carbon dioxide / agar / nutrients / fertiliser

Q2.
(a) phloem
(c) either:
less (sugars for) respiration
or
less amino acids made (1)
(so) less protein produced or less protein synthesis (1)
or
less cellulose made (1)
(so) weaker cell walls (1)
(d) (aphids) can fly to another plant or part of the plant ignore to fly unqualified
to get (more) food
allow to find a mate allow idea of less competition for food allow to escape predators do not accept escape prey
(e) (oil) prevents aphids from attaching to leaf or causes aphids to slide off leaf ignore 'the leaf is slippery'

or

idea that oil may harm / kill the aphid
allow oil may be unpleasant to the aphid
(f) (plant / stem has) thorns
allow spines / spikes / prickles
ignore stings
do not accept thorns protect (the plant) from predators
(g) C
if any other letter given then no marks for the question
(fungi / spores) blown by / in direction of the wind allow black spot / disease is blown by / in direction of the wind
or
it's the closest plant (to A)
do not accept reference to bacteria / viruses / pollen being blown
(h) any one from:

- spread rose bushes out more
allow isolate the infected plant allow idea of barrier around infected plant ignore separate unless qualified
- remove any infected parts of the plant allow remove infected plant / A
- use a fungicide
ignore pesticide
do not accept insecticides / herbicide

Q3.
(a) (mouthpiece) has pierced / entered the phloem
or
(the aphid) has been feeding from the phloem
(b) yellow leaves due to lack of chlorophyll
ignore 'chloroplasts'
ignore magnesium is needed to make chlorophyll
(therefore) less / no light absorbed (by chlorophyll)
(therefore) lower rate of / no photosynthesis do not allow 'energy is produced by photosynthesis'
(therefore) plant makes less / no sugar / glucose
(therefore) plant converts less / no sugar / glucose into protein (for growth, so growth is stunted)
allow less glucose / sugar converted into
cellulose (cell wall)
allow less energy for protein synthesis
(c) inject the protein / it into a mouse
combine lymphocytes with tumour / cancer cells to make hybridoma (cells)
ignore white blood cells
allow T or B lymphocytes
ignore tumour unqualified
find a hybridoma which makes a monoclonal antibody specific to PVY
(the scientist) clones (the hybridoma) to produce many cells (to make the antibody)
do not allow cloning of original stem cells
allow many rounds of cloning / mitosis

Q4.
(a) (A) bronchus
allow bronchi
allow bronchiole
(B) trachea
allow windpipe
(C) alveolus
allow alveoli
ignore air sac
(b) circulatory system
(c) \mathbf{Q}
(d) guard cell
(e) a group of cells with a similar structure / function

1

Q5.
(a) electron (microscope)
(b) $\frac{30000}{200}$
an answer of $150(\mu m)$ scores 2 marks
$150(\mu \mathrm{~m})$
if answer is incorrect allow for 1 mark sight of 0.015 / 0.15 /
1.5 / 15
allow ecf for incorrect measurement of line \boldsymbol{X} for max 1 mark
(c) either
large surface area
allow (vacuole contains) cell sap that is more concentrated than soil water (1)
for more / faster osmosis
create / maintain concentration / water potential gradient (1)
or
allow thin (cell) walls
for short(er) diffusion distance
(d) (on hot day) more water lost
allow converse for a cold day if clearly indicated
more transpiration
or
more evaporation
so more water taken up (by roots) to replace (water) loss (from leaves)
(e) (aerobic) respiration occurs in mitochondria do not accept anaerobic respiration
(mitochondria / respiration) release energy do not accept energy produced / made / created
(energy used for) active transport
to transport ions, against the concentration gradient
or
from a low concentration to a high concentration

Q6.
(a) 86
allow this answer only
do not accept 85.7
if no answer given, check for answer in the table
(b) as salt concentration increases, percentage of open stomata (in field of view) decreases (above $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$)
or
allow percentage of open stomata stays the same between 0.0 and 0.1 ($\mathrm{mol} / \mathrm{dm}^{3}$ then decreases as salt concentration increases)
ignore references to number of open stomata
allow converse
allow idea that mean concentration (of salt) in guard cells is between 0.3 and 0.4 mol per dm^{3}
(c) use concentrations between $0.3\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ and $0.4\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$
or
draw a graph of the data and read off the value at 50% (open stomata)
allow a list of appropriate concentrations i.e. $0.32 \mathrm{~mol} / \mathrm{dm}^{3}$), 0.34 ($\mathrm{mol} / \mathrm{dm}^{3}$), $0.36\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ etc.
(d) $\quad\left(\pi \times 0.1875^{2}\right)=0.11\left(\mathrm{~mm}^{2}\right)$
an answer of 36 scores $\mathbf{3}$ marks
$\frac{4}{0.11}$

36 (per mm²)
allow 36.22 / 36.23 or 36.2
if answer is incorrect allow for $\mathbf{2}$ marks for sight of number of open stomata $=9$ per mm^{2} (diameter used instead of radius) if no other marks awarded allow for 1 mark any one from:

- sight of area $=0.44\left(\mathrm{~mm}^{2}\right)($ diameter used instead of radius)
- \quad sight of number of open stomata $=9.1 / 9.05 / 9.06$ per mm^{2} (diameter used instead of radius and no rounding)
(e) (potassium) ions increase the concentration of the solution (inside guard cells) or (potassium) ions make cell more concentrated / less dilute allow (potassium) ions decrease concentration of water / water potential (of guard cells)
water moves into the (guard) cell by osmosis
cell swells unevenly (so stoma opens)
as inner wall is less flexible than outer wall or thick part of the wall is less flexible than the thin part (of the wall)

Q7.
(a) active transport
(b) by transpiration stream / pull
in xylem
(c) any three in the correct order from:

- mount epidermis on a slide
- count stomata in one area
- repeat in four more areas
- repeat method on other surface of leaf
- calculate mean
allow nail varnish film
(d) 1
allow numbers written out in a line with middle number circled
(e) $(44+41+40+42+39) / 5=41.2$

41
allow 41 with no working shown for 2 marks
allow 41.2 for 1 mark
(f) less water lost
so it does not wilt

Q8.
(a) to kill virus
or
to prevent virus spreading
(b) take (stem) cells from meristem
or
tissue culture
allow take cuttings
(c) use Benedict's solution
glucoses turns solution blue to orange
(d) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points that explain why plants with TMV have stunted growth.

Level 1 (1-2 marks):
Simple statements are made, but not precisely. The logic is unclear.

0 marks:

No relevant content.

Indicative content

- less photosynthesis because of lack of chlorophyll
- therefore less glucose made
so
- less energy released for growth
- because glucose is needed for respiration and / or
- therefore less amino acids / proteins / cellulose for growth
- because glucose is needed for making amino acids / proteins / cellulose

Q9.
(a) guard (cells)
allow phonetic spelling
(b) (i) as carbon dioxide (concentration) increases, the (mean) number of stomata decreases
allow there is a negative correlation
(there is a) rapid drop initially
allow use of any number between 1.5 and 3.0 to indicate "initially"
(ii) (there is) more carbon dioxide so plant doesn't need as many stomata (to obtain the amount needed)
or
(there is) less carbon dioxide so the plant needs more stomata (to obtain enough)
(c) (i) may lose too much water
allow plant may wilt
ignore references to oxygen / carbon dioxide
plants lose a lot of water is insufficient
ignore flaccid
(ii) any one from:

- hot
- dry
- windy
ignore environments unqualified eg desert

Q10.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.

Level 3 (5-6 marks):

Processes used for obtaining specified materials are given.
and
correctly linked to the vessels that the materials are transported in
or
correctly linked to a description of the direction of movement of the materials.
For full credit, in addition to the above descriptors at least one of the processes must be linked to the vessel that the material is transported in and the direction of the movement of the material.

Level 2 (3-4 marks):

At least one process for obtaining a specified material is given
and
is correctly linked to the vessel that the material is transported in
or
correctly linked to a description of the direction of movement of the material

Level 1 (1-2 marks):

At least one process (P) for obtaining a material is given
or
at least one vessel (V) and the material it carries is given
Or
there is a description of the direction of movement (M) for at least one material
0 marks:
No relevant points are made

examples of points made in the response lons:

(P) taken up by diffusion or active transport

- from an area of high to low concentration (diffusion) or an area of low to high concentration (active transport)
(V) travels in the xylem
(M) to the leaves or from the roots / soil

Water:

(P) taken up by osmosis

- from an area of low to high concentration
allow high concentration of water to low concentration of water
allow from high water potential to low water potential
ignore along a concentration gradient
(V) travels in the xylem
(M) to the leaves or from the roots / soil
(P) transpiration stream
- movement replaces water as it evaporates from leaves (V) in the xylem

Sugar:

(P) made during photosynthesis
(V) travels in the phloem
(M) to other parts of the plant or to storage organs or travels up and down

Q11.
(a) (i) 5.0
(5×0.8) or 4
allow ecf from distance
0.4
allow ecf from 10-min volume
(ii) increased (rate of uptake)
more transpiration / evaporation
(b) correct scales
allow reversed axes
correctly labelled axes with units
correct points
one plot error = max 1 mark
curved line of best fit
allow correct straight line
(c) leaves wilt
because plants lose too much water (by evaporation)
through the stomata
or
because cells become plamolysed
or
stomata close controlled by guard cells to prevent wilting

Q12.
(a) (i) water $/ \mathrm{H}_{2} \mathrm{O}$
accept oxygen
allow $\mathrm{H}_{2} \mathrm{O}$
do not allow $\mathrm{H}^{2} \mathrm{O}$ or H 2 O
(ii) the mineral ions are absorbed by active transport
the absorption of mineral ions needs energy
(iii) have (many root) hairs
(which) give a large surface area (for absorption)
(b) carbon dioxide in

Or
oxygen out
or
control water loss
accept gas exchange
ignore gases in and out
ignore gain / lose water
(c) (i) guard cells
(ii) (stomata are) closed
allow there is no gap / space
(iii) plant will wilt / droop
ignore die

Q13.
(a) A - atrium
ignore references to right / left

B - ventricle
(b) (i) muscular
(ii) push blood
accept pump / force
(c)

arrows approx as indicated
arrow(s) showing flow from A to B from B out / up / to artery
(d) (i) male

65 and over
(ii) fatty deposits / material in (coronary) arteries allow correct points made about heart attacks
narrows / blocks / reduces flow
decreases oxygen supply (to heart muscle)

Q14.
(a) guard cells
(b) (i) any one from:

- species / plant
- length of time ignore temperature and size of leaves
(ii) 20
correct answer = 2 marks
accept $\frac{1.6-1.28}{1.6} \times 100$
$\underline{0.32} \times 100$
or $\quad 1.6$
for 1 mark
ignore bright / sunny conditions
dry / low humidity
wind(y)
(a) (i) xylem
(b) (i) movement of (dissolved) sugar allow additional substances, eg amino acids / correct named sugar (allow sucrose / glucose)
allow nutrients / substances / food molecules if sufficiently qualified ignore food alone
(ii) sugars are made in the leaves
so they need to be moved to other parts of the plant for respiration / growth / storage
(c) (i) mitochondria
(ii) for movement of minerals / ions

Do not accept 'water'
against their concentration gradient

Q16.
(a) (i) traps light (energy)
allow uses light / converts light energy to chemical energy
for photosynthesis / for making sugar / starch / carbohydrates
ignore food
allow organic molecules
(ii) dodder takes sugar / glucose / sucrose from phloem / dodder cannot make its own glucose / carbohydrate
or
phloem has sugar / glucose / sucrose
accept amino acids / fatty acids / other small organic molecule
(iii) any one from:

- not enough sugar / nutrients to grow / respire accept not enough food to grow / respire
- might strangle / restrict growth by squeezing stem tightly
- may damage stem tissues by growing into it
- may smother leaves / block light so less photosynthesis / less growth
(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

Description and explanation of an adaptation which only involves hooks and / or suckers.

Level 2 (3-4 marks)
Description and explanation of adaptations including hooks and / or suckers with any other adaptation or explanation.

Level 3 (5-6 marks)
Description of most correct adaptations and explanations.

Examples of biology points made in the response:

- hooks - for holding on / not being detached
- suckers - for holding on / not being detached
- flattened / large surface area - absorption of (large amounts of) food
- no gut - not needed as host digests food
- thick cuticle - protection from host's enzymes / so not digested
- large number of eggs - increased chance of infecting new host allow hermaphrodite and self-fertilising - likely to be just one worm per host
internal fertilisation - gametes not digested

Q17.
(a) (i) xylem
(ii) phloem
(iii) transpiration
(iv) stomata
(b) (i) any one from:

- reduce / prevent evaporation of water from flask
- holds plant shoot in place
- prevent damage to the plant
(ii) same surface area or number of leaves
(because if they used larger / smaller size shoots) there would be a larger / smaller surface area or a larger/ smaller number of leaves
allow same number of stomata
from which (the same amount of) water evaporates
(and therefore) more / less water would escape
allow from which water escapes
(iii) 4.5
look for answer written in table
(iv) increasing temperature / heat increases (rate of) water loss / evaporation
(v) having moving air / a fan increases (rate of) water loss / evaporation
(c) (i) 0.3 g
(ii) plastic bag reduces air flow across leaves or air is humid around the leaves
allow plastic bag stops water (vapour) leaving allow air (in plastic bag) becomes saturated (with water)

Q18.

(a) any three from:

- (water through a) partially permeable
accept 'semi permeable' / selectively permeable
- membrane
- from dilute to (more) concentrated solution
allow 'from a high concentration of water to a lower concentration (of water)'
allow 'from high water potential to low water potential' allow 'down a concentration gradient of water'
do not accept 'along a concentration gradient of water'
- (it‘s a) passive (process)
allow requires no energy
(b) (there are) many hairs or thin hairs or hairs are one cell thick
(which gives) large / increased surface area or short diffusion pathway
(so there is) more diffusion / osmosis (of water into the root) ignore absorption

Q19.

(a) (i) guard (cells)
allow phonetic spelling
(ii) any one from:
ignore reference to cells

- allow carbon dioxide to enter
allow control loss / evaporation of water or control transpiration rate
- allow oxygen to leave.
allow 'gaseous exchange'
(b) (i) 200
correct answer gains 2 marks with or without working allow 1 mark for $0.1 \times 0.1=0.01\left(\mathrm{~mm}^{2}\right)$
(ii) more / a lot of / increased water loss allow plant more likely to wilt (in hot / dry conditions)
(c) (i) 0.12
(ii) the lower surface has most stomata
stomata are now covered / blocked (by grease)
so water cannot escape / evaporate from the stomata ignore waterproof
to gain credit stomata must be mentioned at least once

Q20.
(a) any one from:
ignore 'check temperature'

- add a water bath
- heat screen
- use LED
- low energy bulb / described
(b) (i) rate / number of bubbles decreases accept converse with reference to increasing light or shorter distance
or
less oxygen / gas released
ignore reference to rate of photosynthesis
(ii) temperature / CO_{2} (concentration)
accept 'it was too cool' or not enough CO_{2}
accept number of chloroplasts / amount of chlorophyll
allow heat
allow CO2
do not allow CO^{2}
(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of at least 1 tissue or at least 1 function of an indicated part of the leaf.

The account lacks clarity or detail.

Level 2 (3-4 marks)

There is a clear description which includes at least 1 named tissue and at least 1 correct function described for an indicated part of the leaf.

Level 3 (5-6 marks)
There is a detailed description of most of the structures and their functions.

Examples of responses:

- epidermis
- cover the plant
- mesophyll / palisade
- photosynthesises
- phloem
- xylem
- transport.

The following points are all acceptable but beyond the scope of the specification:

- (waxy) cuticle - reduce water loss
- epidermis - no chloroplasts so allows light to penetrate
- stomata / guard cells - allow CO_{2} in (and O_{2} out) or controls water loss
- palisade (mesophyll) - many chloroplasts to trap light
- near top of leaf for receiving more light
- spongy (mesophyll) - air spaces for rapid movement of gases

Q21.
(a) (i) wind
answers in either order
temperature
ignore weather
(ii) different plants have different sizes
ignore reference to validity
/ different numbers of leaves
/ different sizes of leaves
/ different plants take up different amounts of water
/ different number of stomata
/ different surface area
allow different plants need different amounts of water
(b) in table, in sequence:

C
B

A

$$
\begin{aligned}
& \text { all } 3 \text { correct = } \mathbf{2} \text { marks } \\
& 2 \text { correct = } \mathbf{1} \text { mark } \\
& 0 \text { or } 1 \text { correct }=\mathbf{0} \text { marks }
\end{aligned}
$$

(c) transpiration

Q22.
(a) guard cell
ignore stoma / stomata
(b) Species A:
allow converse points for species B
stomata open in dark / at night or close in light / in day
stomata closed during warm(est) period or open when cool(er)
heat (energy) /warmth increases evaporation / transpiration must give explicit link between heat and transpiration
reduces water loss / evaporation / transpiration
ignore photosynthesis

Q23.
(a) xylem and phloem
either order
allow words ringed in box
allow mis-spelling if unambiguous
(b) (i) movement / spreading out of particles / molecules / ions / atoms ignore names of substances / 'gases'
from high to low concentration
accept down concentration gradient
ignore 'along' / 'across' gradient
ignore 'with' gradient
(ii) oxygen / water (vapour)
allow O_{2} / O 2

> ignore $\mathrm{O}^{2 / \mathrm{O}}$
> allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
> ignore $\mathrm{H}^{2} \mathrm{O}$

Q24.
(a) (i) root hairs if clear which word then allow
(ii) xylem
if clear which word then allow
(iii) stomata
if clear which word then allow
(iv) storage organs
in this order
phloem
(b) (i) 23.2
(ii) loss of water (from flask with plant) from leaves / plant
via transpiration / via evaporation
if no other marks allow used in photosynthesis for one mark

Q25.

(a) solution in soil is more dilute (than in root cells)
concentration of water higher in the soil (than in root cells)
so water moves from the dilute to the more concentrated region so water moves down (its) concentration gradient or water moves from a high concentration of water to a lower concentration
concentration of ions in soil less (than that in root cells)
so energy needed to move ions
or
ions are moved against concentration gradient
the direction of the concentration gradient must be expressed clearly
accept correct reference to water potential or to concentrations of water
(b) any three from:

- movement of water from roots / root hairs (up stem)
- via xylem
- to the leaves
- (water) evaporates
- via stomata
(c) (i) $0.67 / 0.7$
accept 0.66, 0.6666666... or $2 / 3$ or 0.6 correct answer gains 2 marks with or without working if answer incorrect allow evidence of $\frac{100}{150}$ for 1 mark do not accept 0.6 or 0.70
(ii) during the first 30 minutes
any one from:
- it was warmer
- it was windier
- it was less humid
- there was more water (vapour) in the leaves
so there was more evaporation
ignore 'water loss'
or
stomata open during first 30 minutes or closed after 30 minutes (1)
so faster (rate of) evaporation in first 30 min or reducing (rate of)
evaporation after 30 min (1)

Q26.
(a) transpiration
(b) (i) 200
correct answer with or without working if answer incorrect:
allow 1 mark for 8×25 or
allow 1 mark for answer from candidate's count $\times 25$
(ii) \mathbf{R}
allow \boldsymbol{P} or \boldsymbol{Q} if candidate's answer to (b)(i) nearer to value for one of those
do not allow \boldsymbol{R} if the answer to (b)(i) would give an answer of \boldsymbol{P} or \boldsymbol{Q}
allow R if (b)(i) is blank
(iii) few stomat
allow no stomata on upper surface / all stomata on lower surface
little / less transpiration or little / less water (vapour) loss / enable water to be retained
allow no water loss from upper surface

Q27.
(a) (i) water loss
extra substance(s) cancel
if transpiration stream described max 1 mark
as a vapour / by evaporation
ignore stomata
(ii) stomata / stoma / guard cells
ignore epidermis
(b) (i) 2.8
correct answer with or without working gains 2 marks if answer incorrect:
allow 1 mark for ($8.6-0.2$) $\div 3$ or $8.4 \div 3$
(ii) warmer at 16:00 / gets cooler
or reverse argument for 19.00

```
faster diffusion / evaporation
accept sun setting as equivalent to heat or light marking
points
or
lighter at 16:00 / gets darker (1)
    if no environmental factor still allow reason mark
stomata open / more open (1)
        eg 'stomata close later in the day7
Or
(more) windy at 16:00 / gets less windy (1)
removal of (more) water vapour / steeper gradient (1)
Or
air is less humid at 16.00 (1)
    allow rain at 19.00
faster diffusion or steeper gradient (1)
```

Q28.
(a) transpiration
(b) increase then decrease
maximum rate at $36-38\left({ }^{\circ} \mathrm{C}\right) / 540-560$ (grams per day) any figure in these ranges
(c) (i) reduce water loss / prevent wilting
allow stops water loss
(ii) $40-45^{\circ} \mathrm{C}$

Q29.
(a) (i) wind

answers in either order

 ignore weather(ii) different plants have different sizes / different numbers of leaves / different sizes of leaves / different plants take up different amounts of water ignore reference to validity allow different plants need different amounts of water
(b) in table, in sequence:

C

$$
\text { all } 3 \text { correct = } 2 \text { marks }
$$

B

A

$$
\begin{aligned}
& \text { all } 3 \text { correct = } \mathbf{2} \text { marks } \\
& 2 \text { correct = } \mathbf{1} \text { mark } \\
& 0 \text { or } 1 \text { correct = } \mathbf{0} \text { mark }
\end{aligned}
$$

(c) transpiration

Q30.
(a) (i) tissue
extra box ticked cancels the mark
(ii) organ extra ring drawn cancels the mark
(b) (i) Layer B
each extra box ticked cancels 1 mark

Layer C
(ii) (contain) chloroplasts / chlorophyll other parts disqualify
(c)

Q31.
(a) guard cells
(b) (i) $2.00 / 2.0 / 2$
(ii) 0.05 or $1 / 20$
(iii) (Q has)
$i t=Q$
large(r) surface area / more stomata / thinner cuticle / larger leaves accept other sensible answers
(iv) wind 30
extra box ticked cancels the mark
(c) wilting
extra ring drawn cancels the mark

Q32.
(a) C
(b) (i) guard (cell)
(ii) temperature water movement / transpiration through stomata / pores / holes /(region) X
or
petroleum jelly blocks / covers stomata / pores / holes / X
stomata / pores / holes / X found on lower surface

Q33.
(a) (i) root hair
(ii) any two from:
ignore food

- water
- ions / minerals / nutrients / salts / correct named eg nitrates ignore N,P,K
- oxygen
(b) (i) stomata
(ii) diffusion

Q34.
(a) transpiration / evaporation / diffusion
ignore osmosis
(b) (i) D
(ii) any two from:

- more / faster diffusion or evaporation or transpiration
- molecules move faster
- maintains concentration gradient

> or keeps water concentration low in the air or brings in more dry air or removes damp air / water

Q35.

(a) guard (cell)
ignore stoma / stomata
(b) Species A:

- stomata open in dark / at night or close in light / in day
- stomata closed during warm(est) period or open when cool(er)
- heat (energy) / warmth increases evaporation / transpiration must give explicit link between heat and transpiration
- reduces water loss / evaporation / transpiration
ignore photosynthesis
allow converse points for species B

Q1.
(a) The diagram shows a section through a plant leaf.

Water evaporates from cell X.

(i) On the diagram, draw an arrow to show how water vapour from cell \mathbf{X} gets out of the leaf.
(ii) Name the process by which water vapour is lost from a leaf.

Draw a circle around one answer.
osmosis
transpiration
wilting
(b) The graph shows how much water was lost from a plant at different times of the day.

(i) During which 2-hour period was water lost most quickly?
(ii) Give one possible explanation why water was lost most quickly at this time.
\qquad
\qquad
\qquad
\qquad

Q2.

A group of students looked at stomata on four different species of plants, A, B, C and D. They estimated the number of stomata per cm^{2} on the upper and lower surfaces of the leaves of the four species.

Their results are shown in the table.

Plant species	Estimated number of stomata per $\mathbf{c m}^{2}$ of leaf surface	
	Upper surface of leaf	Lower surface of leaf
A	4000	28000
B	0	800
C	8500	15000
D	8000	26000

(a) Which plant species probably lives in a dry region? \square
Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) All four species have more stomata on the lower surface of their leaves than on the upper surface.

Suggest how this could help the plants to survive better.
\qquad
\qquad
\qquad
\qquad

Q3.

Four leaves were removed from the same plant. Petroleum jelly (a waterproofing agent) was spread onto some of the leaves, as follows:

Leaf \mathbf{A} : on both surfaces
Leaf \mathbf{B} : on the lower surface only
Leaf C: on the upper surface only
Leaf \mathbf{D} : none applied
Each leaf was then placed in a separate beaker, as shown in diagram 1.

Diagram 1

Each beaker was weighed at intervals. The results are shown in the graph.

(a) Give evidence from the graph in answering the following questions.
(i) Which surface (upper or lower) loses water most rapidly? \qquad
Evidence \qquad
(ii) Is water lost from both surfaces of the leaf? \qquad
Evidence \qquad
\qquad
(b) Diagram 2 shows the appearance of each surface of the leaf as seen through a microscope.

Diagram 2

(i) Name space \mathbf{X} and cell \mathbf{Y}.

X \qquad
Y \qquad
(ii) Use information in diagram 2 to explain why the results are different for leaves B and \mathbf{C}.
\qquad
\qquad
\qquad
\qquad

Q4.
The table gives information about a geranium plant and a cactus plant.

The geranium grows in gardens in the UK. The cactus grows in hot deserts.

Feature	Geranium	Cactus
Thickness of waxy cuticle in micrometres	5	15
Total leaf surface area in cm^{2}	1800	150
Percentage of water storage tissue in stem	50	85
Number of stomata per mm ${ }^{2}$	59	13
Time of day when stomata open	daylight	at night
Horizontal spread of roots in metres	0.2	5

Using only information in the table, explain how the cactus is better adapted for living in hot, dry conditions.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\qquad
(Total 5 marks)

Q5.

(a) Complete the following sentences.

Green plants produce their own food by a process called photosynthesis. In this
process the raw materials are \qquad and carbon
dioxide. Glucose and \qquad are produced.
\qquad energy is absorbed by the green substance
called \qquad .
(b) Name two things that can happen in the plant to the glucose produced in photosynthesis.

1. \qquad
2. \qquad
(c) Plants need mineral salts.
(i) Through which part do mineral salts get into the plant?
\qquad
(ii) Explain why water is important in this process.
\qquad
\qquad
\qquad
\qquad

Some students set up water cultures to find out how plants use nitrates.
They had two sets of nutrient solutions.
A full solution provided the plant with all the required nutrients.
The results table shows the average mass of the seedlings after 28 days of growth.

Culture solution	Average mass af seedling in g
distilled water	0.14
full solution with no nitrates	0.29
full solution	0.43

(d) (i) Give a conclusion you could make from these results.
\qquad
\qquad
(ii) Calculate the difference in average mass caused by the addition of nitrates to the culture solution.
\qquad
(iii) What are nitrates used for in the seedling?
\qquad
(iv) Some factors need to be controlled to keep this test fair. Name two of them.

1. \qquad
2. \qquad
(v) Suggest one way you could improve the experiment.
\qquad

Q6.
(a) What type of blood vessels join arteries to veins?
\qquad
(b) How are oxygen and carbon dioxide carried in the blood?
\qquad
\qquad
\qquad
\qquad
(c) List three things that are carried around the body in the blood plasma.

1. \qquad
2. \qquad
3. \qquad

Q7.
(a) Photosynthesis is a process that takes place in green plants.
(i) What type of energy is needed for this process?
\qquad
(ii) What substance in the plant absorbs this energy?
\qquad
(iii) In which part of the plant cell does photosynthesis take place?
\qquad
(iv) Write a balanced chemical equation for photosynthesis.
\qquad
(b) Describe two ways you could speed up photosynthesis.
\qquad
\qquad
\qquad
(c) The diagram shows the outline of a cross-section of a leaf. Name cells $\mathbf{1}$ and $\mathbf{2}$ and describe how they are involved in photosynthesis.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.
The diagram shows how a leaf of a green plant makes glucose.
(a) Use words from the box to complete the labels on the diagram. You may use each word once or not at all.

carbon dioxide chlorophyll	glucose heat	
light	oxygen	water

(b) (i) Compete the following sentence.

Glucose in food is a type of \qquad When we eat it, it gives us energy.
(ii) The plant turns some of the glucose into starch. Why is starch useful to the plant?
\qquad
\qquad
(iii) What does the plant do with the rest of the glucose?
\qquad
(c) (i) What is the name of the process outlined in the diagram?
\qquad
(ii) Give one way that leaves are adapted to do this process.
\qquad

Q9.
Some students set up the following apparatus.

The balances show the same mass at the start of the investigation.
After 24 hours the mass of flask \mathbf{B} was the same but the mass of flask \mathbf{A} had changed.
(i) Describe and explain the change to the mass of flask \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Why did the students need to set up flask \mathbf{B} ?
\qquad
\qquad

Q10.
(a) Put a tick (\checkmark^{\prime}) in the correct boxes in the table below to show which of the parts given are present in the cells and organisms listed.

	CYTOPLASM	NUCLEUS	CELL WALL	GENES
Leaf mesophyll cell				
Sperm				

(b) (i) What is the main job of a leaf mesophyll cell?
\qquad
\qquad
(ii) Explain one way in which the structure of the leaf mesophyll cell helps it to carry out its job.
\qquad
\qquad
\qquad
\qquad

Q11.
A market gardener produces large numbers of attractive, large flowered geranium plants.

(a) Give two advantages to the gardener of producing geraniums from cuttings rather than from seeds.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Gardeners often cover trays of cuttings with large polythene bags.

Suggest one advantage of this.
\qquad
\qquad

Q12.
Busy lizzie plants produce flowers with many different colours.

A gardener wants to produce busy lizzie plants to fill a flower bed in her garden. She decides to grow them from cuttings rather than seeds.
(a) Give one condition that she should supply to the new cuttings so that they grow well.

Busy Lizzie plants can produce flowers which are white, pink or red.
A gardener wants to grow a display containing all three colours of flowers.
(b) Give one advantage and one disadvantage to the gardener of growing Busy Lizzie plants from cuttings rather than seeds.

Advantage \qquad
Disadvantage \qquad
(Total 3 marks)

Q13.

The drawing shows a plant that is adapted to life in a hot, dry desert.

(a) Which labelled part of the plant helps it to get the water it needs?
\qquad
\qquad
(b) The stem of the plant is covered by wax.

How does this help the plant to survive?
\qquad
\qquad

Q14.

(a) Balance the following equation for photosynthesis.
\qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+$ \qquad O_{2}
(b) Give two conditions necessary for photosynthesis apart from a suitable temperature range and the availability of water and carbon dioxide.

1. \qquad
2. \qquad
(a) Plants have leaves which contain guard cells and palisade cells. Explain how each of these kinds of cell assists photosynthesis.

Guard cells \qquad
\qquad
\qquad
\qquad

Palisade cells \qquad
\qquad
\qquad
\qquad
(d) Glucose is a product of photosynthesis. Give three uses which green plants make of glucose.

1. \qquad
2. \qquad
3. \qquad

Q15.

(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

(iii) What sort of weather may cause the cereal crop to wilt?
\qquad
(b) Describe the process of transpiration in plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.
(a) (i) on diagram:
arrow drawn from cell \mathbf{X}, through air space and out through stoma above stoma
(ii) transpiration
(b) (i) $13-15$ ignore units
(ii) any two from:

- warmest / hottest / brightest time of day accept warmer / hotter or sun higher in sky
- water evaporates fastest
- stomata open / more open

Q2.
(a) B
(B has) low(est) number of stomata
or no stomata on upper surface
or only 800 (on lower surface)
less transpiration / evaporation / water loss owtte or water (vapour) is lost via stomata
only allow zero water loss if linked to no stomata on upper surface / linked to leaf B upper surface
ignore references to leat surface area
(b) reduce loss / amount of water (vapour)
accept converse
or
reduced transpiration (from upper surface)
do not allow no water is lost
warmer above leaf
accept converse
or wilted leaf folds over lower surface
or lower leaf in shade
ignore reference to dust
or less light / heat / sun on lower side

Q3.
(a) (i) lower - B loses less (water / mass) than \mathbf{C} or described in terms of petroleum jelly accept converse re Leaf C
(ii) yes - \mathbf{B} and \mathbf{C} lose less than \mathbf{D} or \mathbf{B} and \mathbf{C} lose more than \mathbf{A} or
D loses the most or
A loses the least
do not accept just 'all leaves lose some weight'
(b) (i) $\mathrm{X}=$ stoma
accept stomata / stomatal pore do not accept air space
$\mathbf{Y}=$ guard cell
(ii) petroleum jelly blocks stomata / pores or petroleum jelly prevents water loss or petroleum jelly waterproofs
allow pores are blocked in \boldsymbol{B}
water (mainly) lost via stomata / pores / X or stomata on lower surface only

Q4.

Quality of written communication

for ideas given in a sensible order;
comparison made for geranium and cactus for each feature (ie not just list for geranium followed by list for cactus)

+ linking of feature \& explanation
any four features + explanations from:
cactus has:
accept converse points for geranium plant

Feature	Explanation
thicker cuticle	waterproof / keeps water in
smaller surface area	less water loss / less heat absorbed
fewer stomata	less water loss
stomata open at night / closed in day	(closed when warmest) - so less water loss
more widespread roots	quickly absorbs water (after rain) / access to bigger area for absorbing water / absorb more water
more water storage tissue	little water available in environment / can survive drought / avoids dehydration

Q5.
(a) water [1]
oxygen [1]
(sun) light or solar [1]
do not accept sun's
chlorophyll [1]
do not accept chloroplasts
(b) any two from:
stored as fructose
stored as sucrose
stored as starch
stored as oil or lipid
moved or transported away in the phloem
do not accept "stored" by itself
respired or burnt up for energy or
fuel changed to protein
changed to cellulose
changed to fructose
changed to starch
changed to oil or lipid
do not accept "food for plant"
do not accept "used up" by itself
(c) (i) roots or root hair (cells)
(ii) the mineral salts are (dissolved) in water [1]
water transports salts throughout the plant or water enables osmosis or diffusion to take place [1]
(d) (i) plants grow better with some nutrients than none or
plants grow better with nitrates than without comparison is needed accept "faster" as equivalent to "better" accept don't grow well with only water
(ii) $\quad 0.14(\mathrm{~g})$
units not needed
(iii) making protein or amino acids
do not accept help them grow
accept named protein or DNA or chlorophyll
any two from:
(iv) type or variety or starting weight or
(iii) size of seedlings
keep the environment the same only if light or temperature or day length not already credited
light
temperature not heat time of growth
do not accept the same equipment do not accept help them grow
day length
amount of culture solution or/size of
accept named protein, DNA chlorophyll
boiling tube
number of seedlings per tube
pH
CO_{2}
humidity

Q6.

(a) capillaries
(b) (oxygen) in red blood cells or haemoglobin
the candidate must make clear which substance is which for 2 marks
(carbon dioxide dissolved in) the plasma
accept in haemoglobin in regions of high carbon dioxide concentration
accept for 1 mark oxygen $+\mathrm{CO}_{2}$ is transported by red blood cells or haemoglobin
do not credit red + white blood cells or combinations of right + wrong answers
(c) one mark for each up to a maximum of three
red blood cells
award 1 mark for blood cells if no red or white
white blood cells (or named white blood cell up to 2)
platelets
urea
accept nitrogenous waste
do not credit waste substances or products
minerals (or one named mineral)
accept ions or salts
vitamins
water
hormones (named hormone up to 3)
protein (named blood proteins up to 2)
glucose
accept other named soluble sugar
do not credit sugar(s) or blood sugar or sucrose
fatty acids or glycerol
amino acids
digested food or nutrients (if individual foods not credited)
do not credit starch or carbohydrates
do not credit nutrition or food
do not credit oxygen
do not credit haemoglobin
carbon dioxide
accept nitrogen
antibodies
antitoxins
drugs or toxins (named up to 2)
bacteria or viruses
cholesterol

Q7.
(a) (i) light or solar
do not credit sun's energy do not credit radiant
(ii) chlorophyll
(iii) chloroplast
(iv) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
reactants identified (accept words)
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
products identified (accept words)
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
balanced equation
(b) any two from:
increased CO_{2} concentration
increased water supply
increased temperature (up to a point)
increased light intensity
do not accept heat or warmth
altered light quality by less green or
increasing other colours
(c) any four points

- palisade (mesophyll)
- lots of chloroplasts or chlorophyll or main site for photosynthesis or absorb maximum amount of light
- guard cells
- $\quad \mathrm{CO}_{2}$ in or O_{2} out or water vapour out
- controls size of stoma or pores in leaf
allow stomata

Q8.
(a)

```
oxygen
```

light

> chlorophyll
carbon
dioxide

```
water
```

(b) (i) sugar or carbohydrate
(ii) it can be stored or it is insoluble
accept it has no osmotic effect
(iii) any one from:
respires it or releases or transfers energy turns it or stores it as fructose or sucrose or lipid or protein or cellulose
(c) (i) photosynthesis
(ii) any one from:
flat surface stomata
thin
chloroplasts
veins
large surface area
air spaces
do not accept chlorophyll

Q9.
(i) the mass got less
accept it got lighter
award 1 mark for water was lost from the plant
water was taken into the plant or roots absorbed water
do not accept soaked into plant
and lost through transpiration or the leaves or evaporated from the leaves or stomata
(ii) to check the effect of the plant or to act as a control or to show that it was not due to evaporation from water
do not accept to keep it fair or to check that it was fair do not accept fair test

Q10.
(a) mesophyll / / / (all correct) sperm / / x / (all correct) for 1 mark each
(b) (i) absorbs light/to produce food/photosynthesis (allow references to gaseous exchange) for 1 mark
(ii) has chlorophyll/chloroplasts to absorb light/produce food for 1 mark each (if linked to gas exchange allow - moist surface/ dissolve gases)

Q11.

(a) quick
cheap / many can be produced from one plant cuttings produce plants identical (to parents) / outcome known
any two for 1 mark each
(b) idea that provides damp atmosphere / less likely to wilt reduces or stops transpiration or water loss / keeps it warmer (reject prevents animals eating it)
for 1 mark

Q12.
(a) water / damp / wet
or
suitable temperature / warm / heat / hot
or
light / sun
(accept rooting powder / soil qualified e.g. fine / nutrients / fertiliser / minerals) (do NOT allow oxygen / carbon dioxide / food)
for 1 mark
(b) advantage
quick / cheap / several from one plant / known outcome / same as parent (reject all the same)
disadvantage
all the same / all get same disease
for 1 mark each

Q13.
(a) (long) roots
(b) prevents water from evaporating accept to reduce/stop water loss

Q14.
(a) 666 all required accept a '6n 6 n n 6n' version of the balanced equation provided it is correct in every detail
(b) any two of

- (presence of) chlorophyll or (amount of) chloroplasts accept green leaves (or other green parts)
- (sufficient) light (intensity)
- (light) of a suitable wavelength
any light other than green light
do not credit Sun's energy or sunshine or Sun
(c) guard cells
any two of
* control by osmosis
* the movement of gases
accept movement of carbon dioxide or oxygen or water vapour beware movement of CO_{2} out accept a diagram or description
* through the stoma
palisade cells
any two of
* near the upper surface
* contain (a great) many or more chloroplasts
* (so) contain the most chlorophyll
(d) any three of
* for respiration
* conversion to (insoluble) starch
or to food store or to (other)carbohydrates
* (conversion to) sucrose or to food store or to (other) carbohydrates
or polysaccharides
do not credit just to grow or live or survive accept conversion to food store or to (other) carbohydrates once only
* (conversion to) lipids or fats or oils
* (conversion to) amino acids or (plant) proteins or auxins or (plant) hormones or enzymes

Q15.

(a) (i) photosynthesis
(ii) respiration
do not credit combustion do not credit decay
(iii) dry accept hot or windy or drought
(b) any three from

* evaporation (of water)
or loss of water vapour
* (mostly) from the leaf / leaves
do not credit incorrect reference to leaves
* through the stomata
accept through each stoma
accept through the stomas(sic)
* causing a pull
or causing an increase in osmotic potential (at the top of the plant)
or causing an increase in water potential (at the top of the plant) or causing a decrease in osmotic pressure (at the top of the plant)
* (so that) water moves up (through the plant)
do not credit water vapour moves up through the plant
* as the transpiration stream
* water enters through roots (and goes up plants)

EXAM PAPERS PRACTICE

