

Plant Tissues, Organs, and Systems

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641

Subject: Biology

Exam board: GCSE AQA

Topic: Plant Tissues, Organs, and Systems

Q1.

Plants are made up of cells, tissues and organs.

(a) Draw **one** line from each level of organisation to the correct plant part.

Figure 1 shows a plant cell drawn to scale.

Figure 1

(2)

(b) Where in a plant would the cell in Figure 1 be found?Tick one box.

Epidermis		
Palisade mesophyll		
Phloem		
Xylem		
Calculate the length of	f the chloroplast labelled in Figure 1 .	
	Length =	micrometres
	Lengur =	_ 1111010111et1es
Cells in plant roots do	not photosynthesise.	
Give one reason why.		
As a plant grows, new	root hair cells are formed from unspecialis	ed cells.
How does an unspecia	alised cell become a new root hair cell?	
Tick one box.		
Differentiation		

Metabolism				
Transpiration				
Transport				
				(1)
Scientists can clone pla	nts using tissue cu	lture.		
Figure 2 shows the pro	cess of tissue cultu	ıre.		
		Figure 2		
Parent plant White flower	Scalpel removin		White flower	
(f) Why might scienting	sts want to clone pl	lants?		
Tick one box.				
To create new sp	ecies of plants.			
To introduce varia	ation into plants.			

What is the advantage of cloning plants using tissue culture? (g)

To protect endangered plants from extinction.

To reduce disease resistance in plants.

(1)

Tie	ck one box.		
N	lo special equipment is needed.		
Ρ	lants can be produced quickly.		
Т	he flowers are all different colours.		
Т	he offspring are all genetically different.		
			(
Th	ne growth medium in Figure 2 helps the p	lants to grow.	
Na	ame one substance in the growth medium	n.	
		(Total 10 m	arl

Q2.

Aphids are small insects that carry pathogens.

Figure 1 shows an aphid feeding from a plant stem.

Figure 1

(a) An aphid feeds by inserting its sharp mouthpiece into the stem of a plant.

After feeding, the mouthpiece of an aphid contains a high concentration of dissolved sugars.

Which part of the plant was the aphid feeding from? Tick **one** box. Palisade layer Phloem Stomata **Xylem** (1) (b) What is the process that transports dissolved sugars around a plant? Tick one box. Filtration Respiration Translocation Transpiration (1) (c) Plants infected with aphids have stunted growth. Explain **one** way the removal of dissolved sugars from the stem of the plant causes stunted growth.

	ls do not have wings when they hatch. After several generations, ds hatch which have wings and can fly.
Explain the	e advantage to the aphid of being able to fly.
The leaves	of some plants release oils onto their surface.
Suggest he plant from	ow the production of oil on the surface of a leaf may protect the aphids.

Figure 2 shows part of a rose plant.

Figure 2

Give one adaptation shown in Figure 2 that helps the rose plant defend itself.

Figure 3 shows a plan of a garden containing rose plants.

Figure 3

(g) Plant **A** has the fungal disease rose black spot.

Which plant in Figure 3 is the fungus likely to spread to first?

Give a reason for your answer.

Plant _____

ne way the gard lants in the gard	educe the spre	ad of rose bla	ick spot to

Q3.

Plants can be infected by fungi, viruses and insects.

Aphids are small insects that carry pathogens.

The diagram below shows an aphid feeding from a plant stem.

(a) An aphid feeds by inserting its sharp mouthpiece into the stem of a plant.

Give the reason why the mouthpiece of an aphid contains a high concentration of dissolved sugars after feeding.

	_
Dlont	s infected with applied may show symptoms of magnesium deficiency
Piant	s infected with aphids may show symptoms of magnesium deficiency.
Magr	esium deficiency symptoms include:
•	yellow leaves
•	stunted growth.
Expla	in how a deficiency of magnesium could cause these symptoms.
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

(c)	A farmer thinks a potato crop is infected with potato virus Y (PVY).
	The farmer obtains a monoclonal antibody test kit for PVY.
	To make the monoclonal antibodies a scientist first isolates the PVY protein from the virus.
	Describe how the scientist would use the protein to produce the PVY monoclonal antibody.
	(4) (Total 10 marks)

Q4.

Animals and plants contain organs and tissues.

Figure 1 shows some organs in the human thorax.

Figure 1

(a)	Name parts A, B and C.	
	A	
	В	
	c	
		(3)
(b)	Which organ system is the heart part of?	
	Tick one box.	
	Breathing system	
	Circulatory system	
	Digestive system	
	Excretory system	

Figure 2 shows a cross section of a leaf.

(1)

Figure 2

(c)	In which part of th	he leaf does most photosynthesis take place?	
	Tick one box.		
	P Q	RS	(1)
(d)	What is part T ?		
	Tick one box.		
	Guard cell		
	Phloem		

Stoma

an organ made of tissue	es.
tissue?	
e line from each tissue t	o its function.
Tissue	Function
	Allows diffusion of gases through the leaf
Epidermis	Allows light through to the photosynthesising parts of the leaf
Phloem	Allows water into the leaf
ngy mesophyll	Transport sugars around the plant
путисоорнун	the plant

Q5.

The image below shows part of a root from a cress plant.

The magnification of the cress root in the image above is × 200. There are 1000 micrometres (µm) in a millimetre (mm).	
Calculate the real length of the root hair, X . Give your answer in micrometres (µm).	
Real length X =	µm
Root hair cells take up water from the soil.	

ble shows t	he water uptake by a plant's roots on two different days.
	Mean water uptake in cm³ per hour
Cold day	1.8
Hot day	3.4
Root hair ce	tration of mineral ions in the soil is lower than in root hair cells. Ils take up mineral ions from the soil. Ils contain mitochondria.

	
	
	(4
	(4

(Total 12 marks)

Q6.

A student carried out an investigation using leaf epidermis.

This is the method used.

- 1. Peel the lower epidermis from the underside of a leaf.
- 2. Cut the epidermis into six equal sized pieces.
- 3. Place each piece of lower epidermis into a different Petri dish.
- 4. Add 5 cm³ of salt solution to the six Petri dishes. Each Petri dish should have a different concentration of salt solution.
- 5. After 1 hour, view each piece of epidermis under a microscope at ×400 magnification.
- 6. Count and record the total number of stomata present and the number of open stomata that can be seen in one field of view.

The student's results are shown in the table.

Concentratio n of salt solution in mol / dm³	Number of stomata in field of view	Number of open stomata in field of view	Percentage (%) of open stomata in field of view
0.0	7	7	100
0.1	8	8	100

0.2	7	6	X
0.3	9	6	67
0.4	10	4	40
0.5	9	2	22

X =
Give one conclusion from the results in the table above.
How could the student find out what concentration of salt solution would result in half of the stomata being open?
n half of the stomata being open?
The student measured the real diameter of the field of view to be 0.375 mm. Calculate the number of open stomata per mm² of leaf for the epidermis

	Numb	er of open stomata =	per mm²
		ows two guard cells surrounding a closed ding an open stoma.	stoma and
		O O O O O O O O O O O O O O O O O O O	c part II wall Stoma in part cell wall
Closed storr	ıa	Open stoma	
When light inter	nsity is h	nigh potassium ions are moved into the g	uard cells.
		ement of potassium ions into the guard ce	ells causes the

(e)

		(4 arks
Plants	s transport water and mineral ions from the roots to the leaves.	
(a)	Plants move mineral ions:	
	from a low concentration in the soil	
	to a high concentration in the root cells.	
	What process do plants use to move these minerals ions into root cells?	
	Tick one box.	
	Active transport	
	Diffusion	
	Evaporation	
	Osmosis	
(b)	Describe how water moves from roots to the leaves.	(1)

Q7.

The epider	mis can be	peeled from a	leaf.	
The stomat	a can be s	een using a lig	ht microscope.	
The table b leaf.	elow show	s the data a st	udent collected	from five areas on one
	Loof	Number o	of stomata	
	Leaf - area	Upper surface	Lower surface	
	1	3	44	
	2	0	41	
	3	1	40	
	4	5	42	
	· 1			=
	5	1	39	

What is the media	n number of stomata on the upper surface of the leaf?
Calculate the valu	e of X in the table.
Give your answer	to 2 significant figures.
	Mean number of stomata on lower surface of leaf =
he plant used in to the leaf.	this investigation has very few stomata on the upper surface
Explain why this is	s an advantage to the plant.

Q8.

Tobacco mosaic virus (TMV) is a disease affecting plants.

The diagram below shows a leaf infected with TMV.

© Nigel Cattlin/Visuals Unlimited/Getty Images

(a)	All tools should be washed in disinfectant after using them on plants infected with TMV.	
	Suggest why.	
		-
		(1)
(b)	Scientists produced a single plant that contained a TMV-resistant gene.	
	Suggest how scientists can use this plant to produce many plants with the TMV-resistant gene.	
		-
		(1)
(c)	Some plants produce fruits which contain glucose.	
	Describe how you would test for the presence of glucose in fruit.	

TMV can cause plants to produce less chlorophyll.	
This causes leaf discoloration.	
Explain why plants with TMV have stunted growth.	
	

Q9.

Carbon dioxide enters a plant through stomata on the leaves.

(a) Name the cells that control the size of the stomata.

(1)

(b) Scientists grew tomato plants in air containing different concentrations of carbon dioxide.

The scientists recorded the number of stomata found on the lower surface of the leaves of plants grown at each carbon dioxide concentration.

The graph below shows the results.

(i)	Describe the relationship between the mean number of stomata per mm ²
	and carbon dioxide concentration.

(ii)	Suggest a reason for the relationship you described in part (b)(i).
(i)	Suggest one disadvantage to a plant of having a large number of stomata per mm ² on each leaf.
(ii)	Suggest one environmental condition where a large number of stomata per mm ² on each leaf would be a disadvantage.
	(Total 6 m

Q10.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Plants transport many substances between their leaves and roots.

The diagram below shows the direction of movement of substances through a plant.

Describe how **ions**, **water** and **sugar** are obtained and transported through plants.

In your answer you should refer to materials moving upwards in a plant and to

materials moving downwards in a plant.					

<u></u>	
	
<u></u>	
<u></u>	
<u></u>	
	(Total 6 marks

Q11.

A potometer is a piece of apparatus that can be used to measure water uptake by a leafy shoot.

Figure 1 shows a potometer.

Figure 1

Some students used a potometer like the one shown in Figure 1.

- They measured the water taken up by a shoot in normal conditions in a classroom.
- As the water was taken up by the shoot, the level of water in the capillary tube went down.
- The students recorded the level of the water in the capillary tube at 2-minute intervals for 10 minutes.

Table 1 shows the students' results.

Table 1

Time in minutes	0	2	4	6	8	10
Level of water (on scale) in capillary tube in mm	2.5	3.6	4.4	5.4	6.5	7.5

The area of the cross section of the capillary tube was 0.8 mm².

(a) (i) Complete the following calculation to find the volume of water taken up by the shoot in mm³ per minute.

Distance water moved along the scale in 10 minutes = _____ mm

	Volume of water taken up by the shoot in 10 minutes = mm ³	
	Therefore, volume of water taken up by the shoot in 1 minute = mm ³	
		(3)
(ii)	The students repeated the investigation but this time placed the potometer next to a fan blowing air over the leafy shoot.	
	Suggest how the results would be different. Give a reason for your answer.	
		(2)

(b) The students repeated the investigation at different temperatures.

The results are shown in Table 2.

Table 2

Temperature in °C	Rate of water uptake in mm³ per minute
10	0
15	0.4
20	1.0
25	2.1
30	3.2
35	4.0
40	4.4

Plot the data from Table 2 on the graph paper in Figure 2.

Choose suitable scales, label both axes and draw a line of best fit.

Figure 2

(c) What would happen to the leaves if the potometer was left for a longer time at $40 \, ^{\circ}\text{C}$?

Explain	your answer.			

(3)

(5)

(Total 13 marks)

Q12.

Plants need different substances to survive.

Figure 1 shows the roots of a plant.

Figure 1

(a)	(i)	Mineral ions are absorbed through the roots.	
		Name one other substance absorbed through the roots.	
			(1)
	(ii)	The plant in Figure 1 has a higher concentration of mineral ions in the cells of its roots than the concentration of mineral ions in the soil.	•
		Which two statements correctly describe the absorption of mineral ions into the plant's roots?	
		Tick (✓) two boxes.	
		The mineral ions are absorbed by active transport.	
		The mineral ions are absorbed by diffusion.	
		The mineral ions are absorbed down the concentration	

	The absorption of mineral ions needs energy.	
(iii)	The plant in Figure 1 has roots adapted for absorption.	(2
	Figure 2 shows a magnified part of a root from Figure 1.	
	Figure 2	
	Describe how the root in Figure 2 is adapted for absorption.	
		-
		-
		(2
The	leaves of plants have stomata.	\-
	t is the function of the stomata?	
	_	_
		_
	re 3 shows the underside of two leaves, A and B, taken from a plant in a 's house.	(1

(b)

(c)

Figure 3

(i) In **Figure 3**, the cells labelled **X** control the size of the stomata.

What is the name of the cells labelled X?

Tick (✓) one box.

Guard cells	
Phloem cells	
Xylem cells	

(1)

(ii) Describe how the appearance of the stomata in leaf **B** is different from the appearance of the stomata in leaf **A**.

(1)

(iii) The man forgets to water the plant.

What might happen to the plant in the next few days if the stomata stay

the same as shown in leaf A in Figure 3?	
	(1)
(Total 9 marks)

Q13.

Diagram 1 shows a section through the heart.

Diagram 1

(a) Use words from the box to name the structures labelled ${\bf A}$ and ${\bf B}$ on ${\bf Diagram}$ 1.

A	aorta	atrium	pulmonary artery	ventricle
R	Α			
	В			····

(2)

- (b) The tissue in the wall of the heart contracts.
 - (i) What type of tissue is this?Tick (✓) one box.

	muscular		
	glandular		
	epithelial		
(ii)	What does the	heart do when this tissue contracts?	(1)
			(1)
Draw arrows on Diagram 2 to complete the route taken by deoxygenated blood through the heart.			
Diagram 2			
			(2)

(c)

(d) The graph shows the percentage (%) of adults in the UK who have coronary heart disease.

(i) Look at the graph.

Which group of people is **most** at risk of having coronary heart disease in the UK?

(2)

(ii) Explain what happens to the heart in coronary heart disease.

(3)

(Total 11 marks)

Q14.

The image below shows some cells on the lower surface of a leaf.

© Stefan Diller/Science Photo Library

(a) What are the cells labelled **X** called?

Draw a ring around the correct answer.

guard cells palisade cells mesophyll cells (1)

(b) Water loss by evaporation from leaves is called **transpiration**.

A student set up an experiment to investigate water loss from leaves.

The student:

- took two leaves, A and B, from a plant
- put Vaseline (grease) on both sides of Leaf B; did nothing to Leaf A
- wrote down the mass of each leaf
- attached the leaves onto a string as shown in the diagram below.

- left the leaves for 48 hours
- wrote down the mass of each leaf again
- calculated the percentage (%) change in mass for each leaf.

% decrease = _____

(2)

(1)

Piyo three on	nvironmental conditions that would increase transpiration.
71V# T NT## #1	
	ivilonimental conditions that would increase transpiration.
	TVITOTITIETICAL CONTUINOTIS THAT WOULD INCLEASE TRANSPIRATION.
	TVIIOIITIETILAI COTIGUIOTIS LITAL WOULD ITICIEASE TRAISPITATIOTI.
	iviioninental conditions that would increase transpiration.

Q15.

The diagram below shows a cross-section of a plant root. The transport tissues are labelled.

(a)	(i)	What is tissue A ?
		Draw a ring around the correct answer.
		cuticle epidermis xylem
	(ii)	Name two substances transported by tissue A .
		1.
		2.
(b)	Phlo	oem is involved in a process called translocation.
` '	(i)	What is translocation?
		- <u></u> -
	(ii)	Explain why translocation is important to plants.
(c)		nts must use active transport to move some substances from the soil into thair cells.
	(i)	Active transport needs energy.

Which part of the cell releases most of this energy? Tick (\checkmark) one box. mitochondria nucleus ribosome (1) (ii) Explain why active transport is necessary in root hair cells. (2) (Total 9 marks) Dodder is an unusual flowering plant. It is a parasite. The dodder plant: has no chlorophyll has no roots has no leaves grows attached to the stem of a host plant.

Q16.

(a)

The image below shows dodder attached to its host plant.

© yogesn_more/iStock/ i ninkstock
Dodder has no chlorophyll. Most plants have leaves containing chlorophyll.
What is the function of chlorophyll in most plants?
Parts of the dodder stem grow into the host stem and attach to the host phloem tissue.
Suggest why it is helpful to the dodder plant to be attached to the host's phloem tissue.

(b)

(iii) Suggest why the dodder will have a harmful effect on the host plant.	
	(
In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.	
The tapeworm is another parasite.	
The image below shows part of a tapeworm.	
HooksSuckersBody sections	
© Science Photo Library	
The tapeworm lives inside the small intestine of a mammal. Describe and explain how the tapeworm is adapted for living inside the small intestine of its host.	

dtra space (Total 10 mar)		
		
		
		
/Total 10 mark	xtra space	
/Total 10 mari		
/Total 10 mari		
(Total 10 mari		
(Total 10 mari		
(Total 10 mar)		
(Total 10 mar)		
(Total 10 mar)		
(Total 10 mar)		
/Total 10 mari		
/Total 10 mari	<u></u>	
/Total 10 mari		
		/Total 10 mar

Q17.

Substances are transported through plants.

(a) Use the correct answer from the box to complete each sentence.

capillary	guard cells	phloem
stomata	transpiration	xylem

(1)	Water is transported from the roots to the stem of a plant	
	in the .	

(1)

(ii)	Dissolved sugars	are trar	rsported	through	the	plan

in the	

(1)

(iii) Movement of water through the plant is called the

(1)

(iv) Water vapour moves out of the plant through pores

called	
calleu	

(1)

(b) Students investigated the effect of different conditions on water loss from leaves.

The apparatus is shown in Figure 1.

Figure 1

The students set up four flasks, A, B, C and D.

The students:

- used the same size plant shoot in each flask
- recorded the mass of the flask and plant shoot at the start of each experiment
- · left each flask and plant shoot in different conditions
- recorded the mass of each flask and plant shoot after 2 hours.

Table 1 shows the conditions that flasks A, B, C and D were left in for 2 hours.

Table 1

Flask	Temperature in °C	Fan or no fan
Α	20	No Fan
В	20	Fan
С	35	No Fan
D	35	Fan

The use of the est.	e same size of plant shoot made the investigation a fair
Explain why.	

	 	 -
		(2)

(iii) Table 2 shows the students' results.

Table 2

	Cond	itions	Mass at the start in	Mass after 2 hours in	Mass of water lost in
Flask	Temperature in °C	Fan or no fan	grams	grams	2 hours in grams
A	20	No Fan	150.0	148.1	1.9
В	20	Fan	152.0	148.5	3.5
С	35	No Fan	149.0	145.9	3.1
D	35	Fan	150.0	145.5	

_	
	grams
	Suggest what conclusion can be made about the effect of temperature on water loss from the plant shoot.
_	
_	
	Suggest what conclusion can be made about the effect of the fan on vater loss from the plant shoot.

	students carried out another experiment at 20 °C, with no fan.
The	students used the apparatus in Figure 2.
	Figure 2
	Plastic bag Cotton wool Flask Water Balance
	nis experiment, the students:
n tr	
n th	recorded the mass of the flask and plant shoot before tying the plastic bag around the plant shoot
n th	
	bag around the plant shoot
n tr	removed the bag after 2 hours and recorded the mass again.

		(Total 12 m
iani a)	t roots absorb water from the soil by osmosis. What is osmosis?	
)	The image below shows part of a plant root.	

The plant root is adapted for absorbing water from the soil.

			_
		_	
	-		
		_	
		_	
			_
		(Total 6	2 m
		(10tal o	, 111
•			
	leave	s of most plants have stomata.	
	leave	s of most plants have stomata. Name the cells which control the size of the stomata.	
he			
he			_
he	(i)	Name the cells which control the size of the stomata.	_
he			_
he	(i)	Name the cells which control the size of the stomata.	_
he	(i)	Name the cells which control the size of the stomata.	_
he	(i)	Name the cells which control the size of the stomata.	_

The length and width of this piece of leaf surface are both 0.1 mm.

			per mm²
A different plant spe	cies has 400	stomata per mm² o	f leaf surface.
Having a large number disadvantage to a pl		a per mm² of leaf su	urface can be a
Give one disadvanta	age.		

(c)

The student did the following:

- Step 1: took ten leaves from a plant
- Step 2: weighed all ten leaves

- Step 3: hung the leaves up in a classroom for 4 days
- Step 4: weighed all ten leaves again
- Step 5: calculated the mass of water lost by the leaves
- Step 6: repeated steps 1 to 5 with grease spread on the upper surfaces of the leaves
- Step 7: repeated steps **1** to **5** with grease spread on both the upper and lower surfaces of the leaves.

All the leaves were taken from the same type of plant.

The table below shows the student's results.

Treatment of leaves	Mass of water the leaves lost in g
No grease was used on the leaves	0.98
Grease on upper surfaces of the leaves	0.86
Grease on upper and lower surfaces of the leaves	0.01

	Mass =	(
Very little water was lost when the covered in grease.	e lower surfaces of the leaves were	
Explain why.		

		
		
	 	
		(3)
		Total 9 marks)

Q20.

Some students investigated the effect of light intensity on the rate of photosynthesis.

They used the apparatus shown in **Diagram 1**.

The students:

- placed the lamp 10 cm from the pondweed
- counted the number of bubbles of gas released from the pondweed in 1 minute
- repeated this for different distances between the lamp and the pondweed.
- (a) The lamp gives out heat as well as light.

What could the students do to make sure that heat from the lamp did **not** affect the rate of photosynthesis?

	Distance in cm	Number of bubbles per minute	
	10	84	
	15	84	
	20	76	
	40	52	
	50	26	
(i)	photosynthesis. What evidence is there	5 cm and 50 cm, light was	

Diagram 2

0.1 mm

Describe the structure of the leaf and the functions of the tissues in the leaf.
You should use the names of the tissues in your answer.

(6)

(Total 9 marks)

Q21.

Some students used the apparatus shown in the diagram to measure the rate of water uptake by a plant cutting.

The students set up the apparatus in three different conditions:

- no wind at 15°C
- no wind at 25°C
- wind at 25°C

For each experiment, the students recorded the movement of the air bubble along the scale.

(a) (i) Name the **two** variables the students chose to change in these experiments.

1.

2.			

(2)

(1)

(ii) It was important to use the same plant cutting each time to make these experiments fair.

Explain why.			

(b) The graph shows the students' results.

Which line on the graph, **A**, **B** or **C**, shows the results for each of the three different experiments?

Write each of the letters, A, B and C, in the correct boxes in the table.

Conditions	Letter
No wind at 15°C	

No wind at 25°C	
Wind at 25°C	

(2)

(c) Water is lost from the leaves of the plant cutting.

Name this process.

Draw a ring around one answer.

distillation respiration transpiration
(1)
(Total 6 marks)

Q22.

Plant leaves have many stomata. The diagram shows a stoma.

(a) Name cell X _____

(1)

(b) The table shows the mean widths of the stomata at different times of the day for two

different species of plant.

Species A grows in hot, dry deserts.

Species **B** grows in the UK.

Time of day in hours	Mean width of stoma their maxii	
	Species A	Species B

	0	95	5
Dark	2	86	5
	4	52	6
	6	6	40
	8	4	92
	10	2	98
Light	12	1	100
	14	0	100
	16	1	96
	18	5	54
	20	86	6
Dark	22	93	5
	24	95	5

The data in the table show that species ${\bf A}$ is better adapted than species ${\bf B}$ to living in hot, dry deserts.

Explain how.			

(4)
(Total 5 marks)

Q23.

The diagram shows a section through a plant leaf.

(a) Use words from the box to name **two** tissues in the leaf that transport substances around the plant.

	epidermis	mesophyll	phloem	xylem	
		and	d		(1)
(b)	Gases diffuse b	etween the leaf and the s	urrounding air.		
	(i) What is di	ffusion?			

(ii)	Name one gas that will diffuse from point A to point B on the diagram on a sunny day.
	(Total 4 i
s exc	change substances with the environment.
عوا ا	words from the box to complete each sentence.
	words from the box to complete each sentence.
а	lveoli phloem root hairs stomata
	lveoli phloem root hairs stomata storage organs villi xylem
	storage organs villi xylem
	•
	storage organs villi xylem
	storage organs villi xylem
(i)	storage organs villi xylem Most water enters a plant through
(i) (ii)	Most water enters a plant through The water is transported up the stem to the leaves in the
(i)	storage organs villi xylem Most water enters a plant through
(i) (ii)	Most water enters a plant through The water is transported up the stem to the leaves in the
(i) (ii)	Most water enters a plant through The water is transported up the stem to the leaves in the
(i) (ii) (iii)	Most water enters a plant through The water is transported up the stem to the leaves in the Carbon dioxide enters leaves through
(i) (ii) (iii)	Most water enters a plant through The water is transported up the stem to the leaves in the Carbon dioxide enters leaves through A leaf uses the carbon dioxide to produce sugars. Sugars are transported to

Q24.

For more help, please our website www.exampaperspractice.co.uk

At the start of the experiment both balances showed a mass of 180.0 g.

The diagram shows the reading on each balance 24 hours later.

Calculate the dif	ference between the two masses.	
	Difference in mass =	9
Suggest an expl	anation for the difference between the two	masses.
Suggest an expl	anation for the difference between the two	masses.
Suggest an expla	anation for the difference between the two	masses.
Suggest an expla	anation for the difference between the two	masses.
Suggest an expla	anation for the difference between the two	masses.
Suggest an expla	anation for the difference between the two	masses.
Suggest an expla	anation for the difference between the two	masses.

Q25.

Plants exchange substances with the environment.

	need to use the two di	fferent methods to abs	sorb water and
ons.			
What is meant by	the transpiration strear	m?	

(c) Students investigated the loss of water vapour from leaves.

The students:

- · cut some leaves off a plant
- measured the mass of these leaves every 30 minutes for 180 minutes.

The graph shows the students' results.

(i) The rate of mass loss in the first 30 minutes was 7 milligrams per gram of leaf per minute.

Calculate the rate of mass loss between 30 minutes and 180 minutes.

Rate of mass loss = _____ milligrams per gram of leaf per minute

(2)

(ii) The rate of mass loss between 0 and 30 minutes was very different from the rate of mass loss between 30 and 180 minutes.

Suggest an explanation for the difference between the two rates.

	
	· · · · · · · · · · · · · · · · · · ·
	
	(2)
	(Total 11 marks)

Q26.

Plants lose water vapour from their leaves. Most of this water vapour is lost through the stomata.

(a) Draw a ring around the correct answer to complete the sentence.

Plants lose water vapour by

distillation.

filtration.

transpiration.

(1)

(b) A class of students investigated the number of stomata per mm² on the upper surface and on the lower surface of the leaves of three species of plant, **P**, **Q** and **R**.

The students placed samples of the surface cells onto a grid on a microscope.

Student **X** counted the stomata on the lower surface of a leaf from one of the plant species.

The diagram shows part of the grid that student **X** saw under the microscope.

(i) Complete the calculation to estimate the number of stomata per mm² on the lower surface of this leaf.

Number of stomata in $\frac{1}{25}$ mm² = _____

Number of stomata in 1 mm² = _____

(2)

The table shows the mean results for the class.

Dignt angelog	Mean number of stomata per mm² of leaf		
Plant species	Upper surface of leaf	Lower surface of leaf	
Р	40	304	
Q	0	11	
R	85	195	

(ii) Student **X** had counted the stomata on the lower surface of a leaf from one of the plant species.

Use your answer to part **(b)(i)**, and information in the table, to help you to answer this question.

From which plant species, ${\bf P},\,{\bf Q}$ or ${\bf R},$ was student ${\bf X}$'s leaf most likely to have

been taken?

(1)

(Total 6 marks)

Q27.

The graph shows the rate of transpiration from a plant at different times of the day.

Transpiration occurs mainly in the leaves of a plant.

(a)) ((i)	What is	transpiration?
-----	-----	-----	---------	----------------

(2)

(ii) Through which part of a leaf does most transpiration occur?

(1)

(b) In this investigation, the rate of transpiration decreases between 16:00 hours

and 19:00 hours.

Q28.

(a)

	transpiration over this time.	the rate of	
	Show clearly how you work out your answer.		
			-
			-
			-
	Rate = a	arbitrary units per hou	ur
	Suggest one explanation for the decrease in the rate between 16:00 hours and 19:00 hours.	te of transpiration	
			-
			-
			-
		(Total 7	- -
		(Total 7	- - - mar
aw	a ring around the correct answer to complete the se		- - - mar
aw	a ring around the correct answer to complete the se		- mar
	a ring around the correct answer to complete the se	entence.	mar

(b) Some scientists investigated the effect of temperature on water loss from a plant.

The graph shows the results.

Describe the effect of increasing the temperature on water loss from the p	loss from the plant.	
		

(c) Under different conditions, plants open or close their stomata.

(i) How does closing its stomata help a plant?

(2)

(1)

(ii) In the investigation described in part (b), which temperature range would cause most of the stomata to close?

Draw a ring around **one** answer.

25 - 30 °C 30 - 35 °C 40 - 45 °C

(Total 5 marks)

(1)

Q29.

Some students used the apparatus shown in the diagram to measure the rate of water uptake by a plant cutting.

The students set up the apparatus in three different conditions:

- no wind at 15 °C
- no wind at 25 °C
- wind at 25 °C

For each experiment, the students recorded the movement of the air bubble along the scale.

(a) (i) Name the **two** variables that the students chose to change in these experiments.

1. ______

2.

(ii) It was important to use the same plant cutting each time to make these experiments fair.

Explain why.

(b) The graph shows the students' results.

Which line on the graph, **A**, **B** or **C**, shows the results for each of the three different experiments?

Write each of the letters **A**, **B** or **C** in the correct boxes in the table.

Condition	Letter
No wind at 15 °C	
No wind at 25 °C	
Wind at 25 °C	

(2)

(c) Water is lost from the leaves of the plant cutting.

Name this process.

Draw a ring around one answer.

distillation	respiration	transpiration
		(1)
		(Total 6 marks)

Q30.

Leaves are made from layers of cells.

The diagram shows a section through part of a leaf.

(a) (i) Which word in the table describes layer **A**?

Tick (√) one box.

Layer A	Tick (√)
Tissue	
Organ	
Cell	

(1)

(ii) Which word describes a whole leaf?

Draw a ring around **one** answer.

organ tissue organism (1)

(b) (i) Which two layers of cells, A, B, C and D, can photosynthesise?Use information from the diagram to help you.

Tick (✓) **two** boxes.

Layer A

Layer **B**

Layer C

Layer **D**

(2)

(ii) Give one reason for you	ır answer.
List X gives the names of two List Y gives information about	
Draw one line between each list Y .	part of the cell in list X and information about it in
List X Part of a cell	List Y Information
	Controls the passage of substances into the cell
Vacuole	
	Contains the cell sap
Nucleus	
	Controls the activities of the whole cell

Q31.

The diagram shows a section through a plant leaf.

(a) The cells labelled **X** surround a stoma (pore).

Draw a ring around the correct answer to complete the sentence.

Cells **X** are called guard cells. villi.

(1)

(b) Water vapour is lost from leaves. Water loss causes a leaf to lose mass.

The graph shows how the masses of leaves from two plant species, $\bf P$ and $\bf Q$, changed over several hours. Both leaves were kept in the same conditions.

(i)) What was the mass of the leaf of species Q at 0 hours?		
	grams	(1)	
(ii)	What was the difference between the mass of the leaf of species P and the mass of the leaf of species Q after 5 hours?	` ,	
	grams	(4)	
(iii)	The leaf of anguing O leat water at a factor rate than the leaf of anguing	(1)	
(111)	The leaf of species Q lost water at a faster rate than the leaf of species P .		
	Suggest one reason why		

(1)

(iv) Which weather conditions would cause the greatest rate of loss of mass for both species **P** and species **Q**?

Tick (\checkmark) one box in the table.

Weather co		
Still air or wind	Temperature in °C	Tick (√)
Wind	30	
Still air	30	
Wind	20	

(1)

(c) Draw a ring around the correct answer to complete the sentence.

In very hot, dry conditions, the stomata close.

This is to prevent

anaerobic respiration.
breathing.
wilting.

(1)

(Total 6 marks)

Q32.

A student removed three similar leaves from a plant. The student spread petroleum jelly (a waterproofing substance) on some of the leaves, as follows:

Leaf A: on the lower surface

Leaf B: on the upper surface

Leaf C: none.

The student placed each leaf in a separate beaker. He weighed each beaker at intervals. The results are shown in the table.

Time Mass of leaf + beaker in grams

in hours	Leaf A	Leaf B	Leaf C
0	50.00	55.01	51.99
0	49.99	54.95	51.90
3	49.97	54.90	51.85
5	49.95	54.86	51.80

(a)	Which leaf, A, B or C, lost most water?		
			(1)

(b) The diagram shows the appearance of the upper and lower surfaces of one of the leaves under a microscope.

Upper surface of leaf

Lower surface of leaf

(i) Name cell X. ______

(ii) The petroleum jelly had a greater effect when it was spread on the lower surface

than when it was spread on the upper surface.

Use information from the diagram to explain why.

	(2)
	(Total 4 marks)

Q33.

The diagram shows part of a plant root. A large number of structures like the ones labelled **X** grow out of the surface of the root.

(a) (i) What is the name of structure **X**?

Draw a ring around **one** answer.

	root hair	stoma	villus
			(1)
(ii)	Name two substances which st	ructure X absorbs from the	soil.
	1.		
	2.		
			(2)

(b) The substances in (a)(ii) are transported from the roots to the leaves. Carbon dioxide also enters the leaves.

Draw a ring round the correct answer to complete each sentence.

alveoli.

(i) Carbon dioxide enters leaves through

stomata. villi.

(1)

(ii) Carbon dioxide enters leaf cells by

active transport.
diffusion.
reabsorption.

(1)

(Total 5 marks)

Q34.

(a) Name the process by which water is lost from plant leaves.

(1)

(b) Some students set up the apparatus shown in the diagram to measure the water loss from a potted plant.

The apparatus was placed in different environmental conditions:

- A in still air at 20 °C.
- **B** in still air at 25 °C.
- **C** in a wind at 20 °C.
- **D** in a wind at 25 °C.

Readings from the balance were recorded by a datalogger at 10-minute

intervals.

The results are given in the table.

Time in	Balance reading in grams				
minutes	Α	В	С	D	
0	285.6	284.6	282.9	280.9	
10	285.3	284.2	282.4	280.2	
20	284.9	283.8	281.9	279.4	
30	284.7	283.4	281.4	278.8	

(i)	Under which conditions, A , B , C or D , was water lost most rapidly?	(4)
(ii)	Explain, as fully as you can, why water was lost most rapidly under these conditions.	(1)
		(2)
	(Total 4 m	

Q35.

Plant leaves have many stomata.

The diagram shows a stoma.

(a) Name cell X _____

(1)

(b) The table shows the mean widths of the stomata at different times of the day for two different species of plant.
 Species A normally grows in hot, dry deserts.
 Species B grows in the UK.

	Time of day in hours		ta as a percentage of num width
	in nours	Species A	Species B
	0	95	5
Dark	2	86	5
	4	52	6
	6	6	40
	8	4	92
	10	2	98
Light	12	1	100
	14	0	100
	16	1	96
	18	5	54
	20	86	6
Dark	22	93	5

	24	95	5

The data in the table show that species A is better adapted than species B to

(Total 5 marks)

Mark schemes

Q1.	ı
-----	---

(a)

additional line from a level of organisation negates the mark for that level of organisation

2

(b) palisade mesophyll

1

 $\frac{50}{8}$

(c)

1

6 / 6.25 / 6.3 (micrometres)

1

an answer of 6 / 6.25 / 6.3 scores **2** marks

.

1

(e) differentiation

1

(f) to protect endangered plants from extinction

1

(g) plants can be produced quickly

1

- (h) any **one** from:
 - glucose / sugars / starch
 - amino acids / protein
 - hormones

allow named hormones e.g. auxin

• ions / minerals

allow magnesium / nitrate

vitamins

allow named vitamins e.g. vitamin B

water

allow H₂O / H2O ignore oxygen / carbon dioxide / agar / nutrients / fertiliser

1 [10]

Q2.

(a) phloem

1

(b) translocation

1

(c) either:

less (sugars for) respiration

1

(so) less energy released

1

or

less amino acids made (1)

(so) less protein produced or less protein synthesis (1)

or

less cellulose made (1)

(so) weaker cell walls (1)

1

(d) (aphids) can fly to another plant **or** part of the plant ignore to fly unqualified

to get (more) food

allow to find a mate allow idea of less competition for food allow to escape predators do **not** accept escape prey

1

(e) (oil) prevents aphids from attaching to leaf **or** causes aphids to slide off leaf *ignore 'the leaf is slippery'*

OI

idea that oil may harm / kill the aphid allow oil may be unpleasant to the aphid

1

(f) (plant / stem has) thorns

	allow spines / spikes / prickles ignore stings	
	do not accept thorns protect (the plant) from predators	1
(g	C	
	if any other letter given then no marks for the question	1
	(fungi / spores) blown by / in direction of the wind	
	allow black spot / disease is blown by / in direction of the wind	
	Or We the elegant plant (to A)	
	it's the closest plant (to A)	
	do not accept reference to bacteria / viruses / pollen being blown	1
(h)	any one from:	
	spread rose bushes out more	
	allow isolate the infected plant allow idea of barrier around infected plant	
	ignore separate unless qualified	
	remove any infected parts of the plant	
	allow remove infected plant / A	
	use a fungicide	
	ignore pesticide	
	do not accept insecticides / herbicide	1
		[11]
Q3.		
(a)	(mouthpiece) has pierced / entered the phloem or	
	(the aphid) has been feeding from the phloem	1
(b)	yellow leaves due to lack of chlorophyll	
	ignore 'chloroplasts'	
	ignore magnesium is needed to make chlorophyll	1
	(therefore) less / no light absorbed (by chlorophyll)	
		1
	(therefore) lower rate of / no photosynthesis	
	do not allow 'energy is produced by	

photosynthesis'

		1	
	(therefore) plant makes less / no sugar / glucose	1	
	(therefore) plant converts less / no sugar / glucose into protein (for growth, so growth is stunted)		
	allow less glucose / sugar converted into cellulose (cell wall)		
	allow less energy for protein synthesis	1	
(c)	inject the protein / it into a mouse	1	
	combine lymphocytes with tumour / cancer cells to make hybridoma (cells) ignore white blood cells allow T or B lymphocytes ignore tumour unqualified		
	3	1	
	find a hybridoma which makes a monoclonal antibody specific to PVY	1	
	(the scientist) clones (the hybridoma) to produce many cells (to make the antibody)		
	do not allow cloning of original stem cells		
	allow many rounds of cloning / mitosis	1	
		_	[10]
Q4.			
(a)	(A) bronchus		
	allow bronchi		
	allow bronchiole	1	
	(B) trachea		
	allow windpipe	1	
	(C) alveolus		
	allow alveoli		
	ignore air sac	1	
(b)	circulatory system	1	
(c)	Q		
(d)	quard call	1	
(d)	guard cell	1	

(e) a group of cells with a similar structure / function 1 (f) 1 mark for each correct line extra line from a tissue negates the mark for that tissue 3 [10] Q5. (a) electron (microscope) 1 30000 200 (b) an answer of 150 (µm) scores 2 marks 1 150 (µm) if answer is incorrect allow for 1 mark sight of 0.015 / 0.15 / 1.5 / 15 allow ecf for incorrect measurement of line **X** for max **1** mark 1 either (c) large surface area allow (vacuole contains) cell sap that is more concentrated than soil water (1) 1 for more / faster osmosis create / maintain concentration / water potential gradient (1) or allow thin (cell) walls for short(er) diffusion distance 1 (d) (on hot day) more water lost allow converse for a cold day if clearly indicated 1 more transpiration more evaporation 1

so more water taken up (by roots) to replace (water) loss (from leaves) 1 (e) (aerobic) respiration occurs in mitochondria do not accept anaerobic respiration 1 (mitochondria / respiration) release energy do **not** accept energy produced / made / created 1 (energy used for) active transport 1 to transport ions, against the concentration gradient from a low concentration to a high concentration 1 [12] Q6. (a) 86 allow this answer only do not accept 85.7 if no answer given, check for answer in the table 1 (b) as salt concentration increases, percentage of open stomata (in field of view) decreases (above 0.1 mol / dm³) allow percentage of open stomata stays the same between 0.0 and 0.1 (mol / dm³ then decreases as salt concentration increases) ignore references to number of open stomata allow converse allow idea that mean concentration (of salt) in guard cells is between 0.3 and 0.4 mol per dm3 1 (c) use concentrations between 0.3 (mol / dm³) and 0.4 (mol / dm³) draw a graph of the data and read off the value at 50% (open stomata) allow a list of appropriate concentrations i.e. 0.32 mol / dm³), 0.34 (mol / dm³), 0.36 (mol / dm³) etc. 1 $(\pi \times 0.1875^2) = 0.11 \text{ (mm}^2)$ (d) an answer of 36 scores 3 marks 011 1 36 (per mm²)

allow 36.22 / 36.23 or 36.2

if answer is incorrect allow for **2** marks for sight of number of open stomata = 9 per mm² (diameter used instead of radius) if no other marks awarded allow for **1** mark any **one** from:

- sight of area = 0.44(mm²) (diameter used instead of radius)
- sight of number of open stomata = 9.1 / 9.05 / 9.06 per mm² (diameter used instead of radius and no rounding)

(e) (potassium) ions increase the concentration of the solution (inside guard cells) **or**

(potassium) ions make cell more concentrated / less dilute

allow (potassium) ions decrease concentration of water /

water potential (of guard cells)

water moves into the (guard) cell by osmosis

cell swells unevenly (so stoma opens)

as inner wall is less flexible than outer wall $\bf or$ thick part of the wall is less flexible than the thin part (of the wall)

[10]

1

1

1

1

1

Q7.

(a) active transport

1

(b) by transpiration stream / pull

1

in xylem

1

- (c) any **three** in the correct order from:
 - mount epidermis on a slide
 - count stomata in one area
 - repeat in four more areas
 - repeat method on other surface of leaf
 - calculate mean

allow nail varnish film

3

(d) 1

allow numbers written out in a line with middle number circled

(e) (44 + 41 + 40 + 42 + 39) / 5 = 41.2

1

1

41

allow 41 with no working shown for 2 marks

1

allow 41.2 for 1 mark

(f) less water lost

1

1

so it does not wilt

[11]

Q8.

(a) to kill virus

or

to prevent virus spreading

1

(b) take (stem) cells from meristem

or

tissue culture

allow take cuttings

1

(c) use Benedict's solution

1

glucoses turns solution blue to orange

1

(d) Level 2 (3–4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points that explain why plants with TMV have stunted growth.

Level 1 (1–2 marks):

Simple statements are made, but not precisely. The logic is unclear.

0 marks:

No relevant content.

Indicative content

- less photosynthesis because of lack of chlorophyll
- therefore less glucose made
- less energy released for growth
- because glucose is needed for respiration and / or
- therefore less amino acids / proteins / cellulose for growth
- because glucose is needed for making amino acids / proteins / cellulose

[8]

Q9.

(a) guard (cells)

allow phonetic spelling

(b) (i) as carbon dioxide (concentration) increases, the (mean) number of stomata decreases

allow there is a negative correlation

1

1

(there is a) rapid drop initially

allow use of any number between 1.5 and 3.0 to indicate "initially"

1

(ii) (there is) more carbon dioxide so plant doesn't need as many stomata (to obtain the amount needed)

or

(there is) less carbon dioxide so the plant needs more stomata (to obtain enough)

1

(c) (i) may lose too much water

allow plant may wilt ignore references to oxygen / carbon dioxide plants lose a lot of water is insufficient ignore flaccid

1

- (ii) any **one** from:
 - hot
 - dry
 - windy

ignore environments unqualified eg desert

[6]

1

Q10.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.

Level 3 (5-6 marks):

Processes used for obtaining specified materials are given.

and

correctly linked to the vessels that the materials are transported in

or

correctly linked to a description of the direction of movement of the materials.

For full credit, in addition to the above descriptors at least **one** of the processes must be linked to the vessel that the material is transported in **and** the direction of the movement of the material.

Level 2 (3-4 marks):

At least **one** process for obtaining a specified material is given

and

is correctly linked to the vessel that the material is transported in

or

correctly linked to a description of the direction of movement of the material

Level 1 (1–2 marks):

At least one process (P) for obtaining a material is given

or

at least **one** vessel (V) and the material it carries is given

or

there is a description of the direction of movement (M) for at least one material

0 marks:

No relevant points are made

examples of points made in the response lons:

(P) taken up by diffusion or active transport

- from an area of high to low concentration (diffusion) **or** an area of low to high concentration (active transport)
 - (V) travels in the xylem
 - (M) to the leaves or from the roots / soil

Water:

(P) taken up by osmosis

from an area of low to high concentration

allow high concentration of water to low concentration of water

allow from high water potential to low water potential

ignore along a concentration gradient

- (V) travels in the xylem
- (M) to the leaves **or** from the roots / soil
- (P) transpiration stream
- movement replaces water as it evaporates from leaves
 - (V) in the xylem

Sugar:

- (P) made during photosynthesis
- (V) travels in the phloem
- (M) to other parts of the plant or to storage organs or travels up and down

[6]

Q11.

(a) (i) 5.0

1

 (5×0.8) or 4

allow ecf from distance

1

0.4

allow ecf from 10-min volume

1

(ii) increased (rate of uptake)

			1	
		more transpiration / evaporation	1	
(b)	corr	ect scales allow reversed axes	1	
	corr	ectly labelled axes with units	1	
	corr	ect points one plot error = max 1 mark	2	
	curv	red line of best fit allow correct straight line	1	
(c)	leav	res <u>wilt</u>	1	
	beca	ause plants lose too much water (by evaporation)	1	
	or beca or ston	ugh the stomata ause cells become plamolysed nata close trolled by guard cells		
	to p	revent <u>wilting</u>	1	[13]
Q12. (a)	(i)	water / H ₂ O accept oxygen allow H ₂ O do not allow H ² O or H2O	1	
	(ii)	the mineral ions are absorbed by active transport	1	
		the absorption of mineral ions needs energy	1	
	(iii)	have (many root) hairs	1	
		(which) give a large surface area (for absorption)	1	
(b)	carb	oon dioxide in		

	or oxygen out or	
	control water loss accept gas exchange ignore gases in and out ignore gain / lose water	1
(c)	(i) guard cells	1
	(ii) (stomata are) closed allow there is no gap / space	1
	(iii) plant will wilt / droop ignore die	1 [9]
Q13. (a)	A - atrium ignore references to right / left	1
	B - ventricle	1
(b)	(i) muscular	1
	(ii) push blood accept pump / force	1
(c)	A B	
	arrows approx as indicated	1
	arrow(s) showing flow from A to B from B out / up / to artery	

1

(d)	(1)	male	1	
		65 and over	1	
	(ii)	fatty deposits / material in (coronary) arteries allow correct points made about heart attacks	1	
		narrows / blocks / reduces flow	1	
		decreases oxygen supply (to heart muscle)	1	[11]
Q14.				
(a)	gua	rd cells	1	
(b)	(i)	any one from:		
		 species / plant length of time ignore temperature and size of leaves 	1	
	(ii)	20 $correct \ answer = 2 \ marks$ $\frac{1.6 - 1.28}{accept} \times 100$ $accept$ $\frac{0.32}{1.6} \times 100$ or 1.6		
		for 1 mark	2	
(c)	less	water loss / transpiration / evaporation	1	
(d)	hot		1	
		ignore bright / sunny conditions	-	
	dry /	/ low humidity	1	
	wind	(y)t	1	[8]

Q15.

(a)	(i)	xylem	1	
	(ii)	water	1	
		minerals / ions / named example(s) ignore nutrients	1	
(b)	(i)	movement of (dissolved) sugar allow additional substances, eg amino acids / correct named sugar (allow sucrose / glucose) allow nutrients / substances / food molecules if sufficiently qualified ignore food alone	1	
	(ii)	sugars are made in the leaves	1	
		so they need to be moved to other parts of the plant for respiration / growth / storage	1	
(c)	(i)	mitochondria	1	
	(ii)	for movement of minerals / ions Do not accept 'water' against their concentration gradient	1	[9]
				[9]
Q16. (a)	(i)	traps light (energy) allow uses light / converts light energy to chemical energy for photosynthesis / for making sugar / starch / carbohydrates	1	
		ignore food allow organic molecules	1	
	(ii)	dodder takes sugar / glucose / sucrose from phloem / dodder cannot make its own glucose / carbohydrate or		
		phloem has sugar / glucose / sucrose accept amino acids / fatty acids / other small organic molecule		

ignore takes food / minerals / water / nutrients

(iii) any **one** from:

- not enough sugar / nutrients to grow / respire
 accept not enough food to grow / respire
- might strangle / restrict growth by squeezing stem tightly
- may damage stem tissues by growing into it
- may smother leaves / block light so less photosynthesis / less growth

(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1 – 2 marks)

Description and explanation of an adaptation which only involves hooks **and / or** suckers.

Level 2 (3 – 4 marks)

Description and explanation of adaptations including hooks **and / or** suckers with any other adaptation **or** explanation.

Level 3 (5 – 6 marks)

Description of most correct adaptations and explanations.

Examples of biology points made in the response:

- hooks for holding on / not being detached
- suckers for holding on / not being detached
- flattened / large surface area absorption of (large amounts of) food
- no gut not needed as host digests food
- thick cuticle protection from host's enzymes / so not digested
- large number of eggs increased chance of infecting new host

allow hermaphrodite and self-fertilising – likely to be just one worm per host

internal fertilisation – gametes not digested

[10]

1

1

Q17.

(a) (i) xylem

1

(ii) phloem

1

(iii) transpiration

1

	(iv)	stomata	1
(b)	(i)	any one from:	
(6)	(1)		
		reduce / prevent evaporation of water from flaskholds plant shoot in place	
		prevent damage to the plant	1
	/;;\	same surface area or number of leaves	
	(ii)	(because if they used larger / smaller size shoots) there	
		would be a larger / smaller surface area or a larger/ smaller number of leaves	
		allow same number of stomata	1
			1
		from which (the same amount of) water evaporates	
		(and therefore) more / less water would escape allow from which water escapes	
		and the control of th	1
	(iii)	4.5	
		look for answer written in table	1
	(iv)	increasing temperature / heat increases (rate of) water loss / evaporation	1
	(v)	having moving air / a fan increases (rate of) water loss / evaporation	1
(c)	(i)	0.3 g	
(0)	(1)		1
	(ii)	plastic bag reduces air flow across leaves	
		or air is humid around the leaves	
		allow plastic bag stops water (vapour) leaving	
		allow air (in plastic bag) becomes saturated (with water)	1
			[12]
Q18.			
(a)	any	three from:	
	•	(water through a) partially permeable	
	_	accept 'semi permeable' / selectively permeable	
	•	membrane from dilute to (more) concentrated solution	
		allow 'from a high concentration of water to a lower	
		concentration (of water)' allow 'from high water potential to low water potential'	
		allow 'down a concentration gradient of water'	

	•	do not accept 'along a concentration gradient of water' (it's a) passive (process)		
		allow requires no energy	3	
(b)	(the	re are) many <u>hairs</u> or thin <u>hairs</u> or <u>hairs</u> are one cell thick	1	
	(whi	ich gives) large / increased surface area or short diffusion pathway	1	
	(so	there is) more diffusion / osmosis (of water into the root) ignore absorption		
		ignore absorption	1	[6]
Q19.				
(a)	(i)	guard (cells) allow phonetic spelling	1	
	(ii)	any one from: ignore reference to cells		
		 allow carbon dioxide to enter allow control loss / evaporation of water or control transpiration rate allow oxygen to leave. allow 'gaseous exchange' 		
(b)	(i)	200 correct answer gains 2 marks with or without working allow 1 mark for $0.1 \times 0.1 = 0.01$ (mm ²)	2	
	(ii)	more / a lot of / increased water loss allow plant more likely to wilt (in hot / dry conditions)	1	
(c)	(i)	0.12	1	
	(ii)	the lower surface has most stomata	1	
		stomata are now covered / blocked (by grease)	1	
		so water cannot escape / evaporate from the stomata ignore waterproof		
		to gain credit stomata must be mentioned at least once	1	[9]

Q20.

(a) any **one** from:

ignore 'check temperature'

- add a water bath
- heat screen
- use LED
- low energy bulb / described

(b) (i) rate / number of bubbles decreases

accept converse with reference to increasing light **or** shorter distance

or

less oxygen / gas released ignore reference to rate of photosynthesis

(ii) temperature / CO₂ (concentration)

accept 'it was too cool' **or** not enough CO₂
accept number of chloroplasts / amount of chlorophyll
allow heat
allow CO2
do **not** allow CO²

(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the <u>Marking guidance</u>, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of at least 1 tissue **or** at least 1 function of an indicated part of the leaf.

The account lacks clarity or detail.

Level 2 (3-4 marks)

There is a clear description which includes at least 1 named tissue and at least 1 correct function described for an indicated part of the leaf.

Level 3 (5-6 marks)

There is a detailed description of most of the structures and their functions.

Examples of responses:

· epidermis

Page 103 of 140

1

1

1

- cover the plant
- mesophyll / palisade
- photosynthesises
- phloem
- xylem
- transport.

The following points are all acceptable but beyond the scope of the specification:

- (waxy) cuticle reduce water loss
- epidermis no chloroplasts so allows light to penetrate
- stomata / guard cells allow CO₂ in (and O₂ out) or controls water loss
- palisade (mesophyll) many chloroplasts to trap light
 - near top of leaf for receiving more light
- spongy (mesophyll) air spaces for rapid movement of gases

[9]

6

Q21.

(a) (i) wind

answers in either order

1

temperature

ignore weather

1

(ii) different plants have different sizes ignore reference to validity

/ different numbers of leaves

/ different sizes of leaves

/ different plants take up different amounts of water

/ different number of stomata

/ different surface area

allow different plants need different amounts of water

1

(b) in table, in sequence:

С

В

	Α			
		all 3 correct = 2 marks		
		2 correct = 1 mark		
		0 or 1 correct = 0 marks		
		o di i donodi – e mamo	max 2	
(c)	trans	spiration	1	
			1	[6]
				[6]
Q22.				
(a)	guard	d cell		
		ignore stoma / stomata		
			1	
(h)	Cna	sian A .		
(b)	Spec	cies A :		
		allow converse points for species B		
	stom	nata open in dark / at night or close in light / in day		
	Oton	ata opon in dank / de night of olooo in light / in day	1	
	stom	nata closed during warm(est) period or open when cool(er)	1	
			1	
	heat	(energy) /warmth increases evaporation / transpiration		
		must give explicit link between heat and transpiration		
		and the first state of the stat	1	
		and wastern land. I see a see Com. I to a see that there		
	reau	ces water loss / evaporation / transpiration		
		ignore photosynthesis	1	
			1	[5]
				[5]
Q23.				
(a)	xylen	n and phloem		
, ,	•	either order		
		allow words ringed in box		
		allow mis-spelling if unambiguous		
		anon time opening it anamoigaeas	1	
	<i>a</i> n			
(b)	(i)	movement / spreading out of particles / molecules / ions / atoms		
		ignore names of substances / 'gases'		
			1	
		from high to low concentration		
		accept down concentration gradient		
		ignore 'along' / 'across' gradient		
		ignore 'with' gradient		
		ignore with gradient	1	
	(ii)	oxygen / water (vapour)		
		allow O_2 / $O2$		

ignore O²/ O allow H₂O / H2O ignore H²O

			1	[4]
Q24.				
(a)	(i)	root hairs if clear which word then allow	1	
	(ii)	xylem if clear which word then allow		
		n dear which word their allow	1	
	(iii)	stomata if clear which word then allow	1	
	(iv)	storage organs in this order		
			1	
		phloem	1	
(b)	(i)	23.2	1	
	(ii)	loss of water (from flask with plant) from leaves / plant	1	
		via transpiration / via evaporation if no other marks allow used in		
		photosynthesis for one mark	1	[8]
Q25. (a)	solut	tion in soil is more dilute (than in root cells) concentration of water higher in the soil (than in root cells)	1	
	SO V	vater moves from the dilute to the more concentrated region so water moves <u>down</u> (its) concentration gradient or water moves from a high concentration <u>of water</u> to a lower concentration	1	
	con	centration of ions in soil less (than that in root cells)	1	
	S0 6	energy needed to move ions		

or

ions are moved against concentration gradient

the direction of the concentration gradient must be expressed clearly

accept correct reference to water potential or to concentrations of water

(b) any **three** from:

- movement of water from roots / root hairs (up stem)
- via xylem
- to the leaves
- (water) evaporates
- via stomata

(c) (i) 0.67/0.7

accept 0.66, 0.6666666... or ¾ or 0.6 correct answer gains 2 marks with or without working

100

if answer incorrect allow evidence of 150 for 1 mark do \it{not} accept 0.6 or 0.70

(ii) during the first 30 minutes

any **one** from:

- it was warmer
- it was windier
- it was less humid
- there was more water (vapour) in the leaves

so there was more evaporation ignore 'water loss'

or

stomata open during first 30 minutes or closed after 30 minutes (1)

so faster (rate of) evaporation in first 30 min **or** reducing (rate of) evaporation after 30 min (1)

1

1

3

2

1

[11]

Q2	6.				
(a)		trans	spiration	1	
	(b)	(i)	200	1	
	(b)	(i)	correct answer with or without working		
			if answer incorrect:		
			allow 1 mark for 8 × 25 or		
			allow 1 mark for answer from candidate's count × 25	2	
				-	
		(ii)	R		
			allow P or Q if candidate's answer to (b)(i) nearer to value for one of those		
			do not allow R if the answer to (b)(i) would give an answer of P or Q		
			allow R if (b)(i) is blank		
				1	
		(iii)	few stomat		
			allow no stomata on upper surface / all stomata on lower		
			surface	1	
				1	
			little / less transpiration or little / less water (vapour) loss / enable water retained	er to be	
			allow no water loss from upper surface		
				1	[6]
					[6]
00	_				
Q2		(1)			
	(a)	(i)	water loss		
			extra substance(s) cancel		
			if transpiration stream described max 1 mark	1	
			as a vapour / by evaporation		
			ignore stomata	1	
		(ii)	stomata / stoma / guard cells		
			ignore epidermis	1	
	(b)	(i)	2.8		
			correct answer with or without working gains 2 marks		
			if answer incorrect:		
			allow 1 mark for (8.6 - 0.2) ÷ 3 or 8.4 ÷ 3	2	

or reverse argument for 19.00

warmer at 16:00 / gets cooler

(ii)

1

faster diffusion / evaporation accept sun setting as equivalent to heat or light marking points or lighter at 16:00 / gets darker (1) if no environmental factor still allow reason mark stomata open / more open (1) eg 'stomata close later in the day 7 or (more) windy at 16:00 / gets less windy (1) removal of (more) water vapour / steeper gradient (1) or air is less humid at 16.00 (1) allow rain at 19.00 faster diffusion or steeper gradient (1) [7] Q28. (a) transpiration 1 (b) increase then decrease 1 maximum rate at 36 - 38 (°C) / 540 - 560 (grams per day) any figure in these ranges 1 (c) (i) reduce water loss / prevent wilting allow stops water loss 1 (ii) 40 - 45 °C 1 [5] Q29. (a) (i) wind 1 temperature

answers in either order ignore weather

1 (ii) different plants have different sizes / different numbers of leaves / different sizes of leaves / different plants take up different amounts of water ignore reference to validity allow different plants need different amounts of water 1 in table, in sequence: (b) С all 3 correct = 2 marks В Α all 3 correct = 2 marks 2 correct = 1 mark 0 **or** 1 correct = **0** mark 2 (c) transpiration 1 [6] Q30. (a) (i) tissue extra box ticked cancels the mark (ii) organ extra ring drawn cancels the mark 1 (b) (i) Layer B each extra box ticked cancels 1 mark 1 Layer C 1 (ii) (contain) chloroplasts / chlorophyll other parts disqualify 1

(c)

two correct = 2 marks
one correct = 1 mark
extra line from a part of a cell cancels the mark

[7]

Q31.

(a) guard cells

1

2

(b) (i) 2.00 / 2.0 / 2

1

(ii) 0.05 or 1/20

1

(iii) (Q has)

it = Q

large(r) surface area / more stomata / thinner cuticle / larger leaves accept other sensible answers

1

(iv) wind 30 extra box ticked cancels the mark

1

1

(c) wilting extra ring drawn cancels the mark

[6]

Q32.

(8	a)	С		1	
(k	b)	(i)	guard (cell)	1	
		(ii)	temperature water movement / transpiration through stomata / pores / holes /(region) X		
			or		
			petroleum jelly blocks / covers stomata / pores / holes / X	1	
			stomata / pores / holes / X found on lower surface	1	[4]
Q33.	• a)	(i)	root hair	1	
		(ii)	any two from: ignore food		
			• water		
			• ions / minerals / nutrients / salts / correct named eg nitrates ignore N,P,K		
			• oxygen	2	
(k	b)	(i)	stomata	1	
		(ii)	diffusion	1	[5]
					[9]
Q34.	• a)	trans	spiration / evaporation / diffusion		
			ignore osmosis	1	
(k	b)	(i)	D	1	
		(ii)	any two from:		
			• more / faster diffusion or evaporation or transpiration		
			molecules move faster		
			maintains concentration gradient		

or keeps water concentration low in the air

or brings in more dry air

or removes damp air / water

[4]

Q35.

(a) guard (cell) ignore stoma / stomata

1

2

- (b) Species A:
 - stomata open in dark / at night or close in light / in day

1

• stomata closed during warm(est) period **or** open when cool(er)

1

heat (energy) / warmth increases evaporation / transpiration
 must give explicit link between heat and transpiration

1

 reduces water loss / evaporation / transpiration ignore photosynthesis allow converse points for species B

1

[5]

Q1.

(a) The diagram shows a section through a plant leaf. Water evaporates from cell **X**.

(i) On the diagram, draw an arrow to show how water vapour from cell **X** gets out of the leaf.

(1)

(ii) Name the process by which water vapour is lost from a leaf.

Draw a circle around one answer.

osmosis transpiration wilting

(1)

(b) The graph shows how much water was lost from a plant at different times of the day.

(i) During which 2-hour period was water lost most quickly?

(1)

(ii) Give **one** possible explanation why water was lost most quickly at this time.

(2)

(2)

(Total 5 marks)

Q2.

A group of students looked at stomata on four different species of plants, **A**, **B**, **C** and **D**. They estimated the number of stomata per cm² on the upper and lower surfaces of the leaves of the four species.

Their results are shown in the table.

Plant	Estimated number of stomata per cm ² of leaf surface				
species	Upper surface of leaf	Lower surface of leaf			
Α	4000	28 000			
В	0	800			
С	8500	15 000			
D	8000	26 000			

	ant species probably lives in a dry region?
Explain	he reason for your answer.
All four apper so	species have more stomata on the lower surface of their leaves than on the large.
Sugges	how this could help the plants to survive better.

Q3.

Four leaves were removed from the same plant. Petroleum jelly (a waterproofing agent) was spread onto some of the leaves, as follows:

Leaf A: on both surfaces

Leaf **B**: on the lower surface only Leaf **C**: on the upper surface only

Leaf **D**: none applied

Each leaf was then placed in a separate beaker, as shown in diagram 1.

Diagram 1

Each beaker was weighed at intervals. The results are shown in the graph.

- (a) Give evidence from the graph in answering the following questions.
 - (i) Which surface (upper or lower) loses water most rapidly? _____

Evidence _

	(ii)	Is water lost from both surfaces of the leaf?
		Evidence
၁)		ram 2 shows the appearance of each surface of the leaf as seen through a oscope.
		Upper Surface of Leaf Lower Surface of Leaf
N.		
		Diagram 2
	(i)	Name space X and cell Y .
		X
		Y
	(ii)	Use information in diagram 2 to explain why the results are different for leaves B and C.

Q4.

The table gives information about a geranium plant and a cactus plant.

The geranium grows in gardens in the UK. The cactus grows in hot deserts.

Feature	Geranium	Cactus
Thickness of waxy cuticle in micrometres	5	15
Total leaf surface area in cm ²	1800	150
Percentage of water storage tissue in stem	50	85
Number of stomata per mm ²	59	13
Time of day when stomata open	daylight	at night
Horizontal spread of roots in metres	0.2	5

Using only information in the table, explain how the cactus is better adapted for living in hot, dry conditions.

	gain full marks in this question you should write your ideas in good English. Put them a sensible order and use the correct scientific words.
-	
	(Total 5 ma
(a)	Complete the following sentences.
	Green plants produce their own food by a process called photosynthesis. In this
	process the raw materials are and carbon
	dioxide. Glucose and are produced.
	energy is absorbed by the green substance

called	

(4)

(2)

(b) Name **two** things that can happen in the plant to the glucose produced in photosynthesis.

1	
١.	·

2.	

(c) Plants need mineral salts.

(i)	Through which	part do	mineral	salts get	into the	plant?

(1)

(ii) Explain why water is important in this process.

(2)

Some students set up water cultures to find out how plants use nitrates.

They had two sets of nutrient solutions.

A full solution provided the plant with all the required nutrients.

The results table shows the average mass of the seedlings after 28 days of growth.

Culture solution	Average mass of seedling in g
distilled water	0.14
full solution with no nitrates	0.29
full solution	0.43

(d) (i) Give a conclusion you could make from these results.

(ii)	Calculate the difference in average mass caused by the addition of nitrates to the culture solution.
(iii)	What are nitrates used for in the seedling?
(iv)	Some factors need to be controlled to keep this test fair. Name two of them. 1
(v)	2
	(Total 1
Wha	t type of blood vessels join arteries to veins?
How	are oxygen and carbon dioxide carried in the blood?
List 1	three things that are carried around the body in the blood plasma.
1	three things that are carried around the body in the blood plasma.

Q6.

(Total 6 marks)

	7	
U	1	_
×		

Pho	
(i)	What type of energy is needed for this process?
(ii)	What substance in the plant absorbs this energy?
(iii)	In which part of the plant cell does photosynthesis take place?
(iv)	Write a balanced chemical equation for photosynthesis. →
Des	cribe two ways you could speed up photosynthesis.
Des	cribe two ways you could speed up photosynthesis.
Des	cribe two ways you could speed up photosynthesis.
	cribe two ways you could speed up photosynthesis. diagram shows the outline of a cross-section of a leaf. Name cells 1 and 2 and cribe how they are involved in photosynthesis.
	diagram shows the outline of a cross-section of a leaf. Name cells 1 and 2 and
	diagram shows the outline of a cross-section of a leaf. Name cells 1 and 2 and

(4) 2 marks)

(Total 12 marks)

Q8.

The diagram shows how a leaf of a green plant makes glucose.

(a) Use words from the box to complete the labels on the diagram. You may use each word once or not at all.

(b) (i) Compete the following sentence.

Glucose in food is a type of ______ . When we eat it, it gives us energy.

(5)

(1)

(ii) The plant turns some of the glucose into starch. Why is starch useful to the plant?

			(1)
	(iii)	What does the plant do with the rest of the glucose?	
(c)	(i)	What is the name of the process outlined in the diagram?	(1)
			(1)
	(ii)	Give one way that leaves are adapted to do this process.	(1)
			(Total 10 marks)

Q9.Some students set up the following apparatus.

The balances show the same mass at the start of the investigation.

After 24 hours the mass of flask **B** was the same but the mass of flask **A** had changed.

Describe	and explain	the change	to the mass	of flask A.	

(3)

(ii)	Wh _y	y did the stud	lents need to set up	flask B ?		
						(Total 4 ma
(a)			he correct boxes in t in the cells and org		o show which of th	ne parts
			CYTOPLASM	NUCLEUS	CELL WALL	GENES
Lea	f mes	sophyll cell				
Spe	erm					
(b)	(i)	What is the	main job of a leaf n	nesophyll cell?		
	(ii)	Explain one carry out its	e way in which the s s job.	tructure of the lea	af mesophyll cell h	nelps it to
						(Total 5 ma

Q11.

A market gardener produces large numbers of attractive, large flowered geranium plants.

-	
·	
Garden	ers often cover trays of cuttings with large polythene bags.
Sugges	st one advantage of this.

(Total 3 marks)

Q12.

Busy lizzie plants produce flowers with many different colours.

A gardener wants to produce busy lizzie plants to fill a flower bed in her garden. She decides to grow them from cuttings rather than seeds.

(a) Give **one** condition that she should supply to the new cuttings so that they grow well.

(1)

Busy Lizzie plants can produce flowers which are white, pink or red. A gardener wants to grow a display containing all three colours of flowers.

(b) Give **one** advantage and **one** disadvantage to the gardener of growing Busy Lizzie plants from cuttings rather than seeds.

Advantage			
Disadvantage _	 		

(2)

(Total 3 marks)

Q13.

The drawing shows a plant that is adapted to life in a hot, dry desert.

(a) Which labelled part of the plant helps it to get the water it needs?

(b)	The stem of the plant is covered by wax. How does this help the plant to survive?	
		(1
	(Total 2 ma	rks
Q14.		
(a)	Balance the following equation for photosynthesis.	
	$\underline{\hspace{1cm}} CO_2 \ + \ \underline{\hspace{1cm}} H_2O \ \to \ C_6H_{12}O_6 \ + \ \underline{\hspace{1cm}} O_2$,,
		(1
(b)	Give two conditions necessary for photosynthesis apart from a suitable temperature range and the availability of water and carbon dioxide.	
	1	
	2	
(0)	Diente have leaves which centain guard calls and policeds calls. Explain how seek	(2
(a)	Plants have leaves which contain guard cells and palisade cells. Explain how each of these kinds of cell assists photosynthesis.	
	Guard cells	
	- 	
	- <u></u> -	
		(2
		(2
	Palisade cells	
		(2
(d)	Glucose is a product of photosynthesis. Give three uses which green plants make of glucose.	
	1	
	2	
	3	(3

Page 127 of 140

Q15.

(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

	(iii) What sort of weather may	y cause the cereal crop to wilt?	
			(1)
(b)	Describe the process of transpi	iration in plants.	

(3) (Total 6 marks)

(2)

Mark schemes

Q1.				
(a)	(i)	on diagram:		
		arrow drawn from cell \mathbf{X} , through air space and out through stoma above stoma	1	
	(ii)	transpiration	1	
(b)	(i)	13 – 15 ignore units	1	
	(ii)	any two from:		
		 warmest / hottest / brightest time of day accept warmer / hotter or sun higher in sky 		
		water evaporates fastest		
		stomata open / more open	2	[5]
Q2.				
(a)	В		1	
	or n	nas) low(est) number of stomata to stomata on upper surface only 800 (on lower surface)	1	
		s transpiration / evaporation / water loss owtte vater (vapour) is lost via stomata		
		only allow zero water loss if linked to no stomata on upper surface / linked to leaf B upper surface		
		ignore references to leaf surface area	1	
(b)	redu	uce loss / amount of water (vapour) accept converse		
	or redu	uced transpiration (from upper surface) do not allow <u>no</u> water is lost	1	

warmer above leaf

accept converse

or wilted leaf folds over lower surface or lower leaf in shade ignore reference to dust or less light / heat / sun on lower side 1 [5] Q3. (a) lower - B loses less (water / mass) than C (i) described in terms of petroleum jelly accept converse re Leaf C 1 yes - B and C lose less than D or (ii) B and C lose more than A or D loses the most or A loses the least do not accept just 'all leaves lose some weight' 1 X = stoma(b) (i) accept stomata / stomatal pore do not accept air space 1 Y = guard cell 1 (ii) petroleum jelly blocks stomata / pores or petroleum jelly prevents water loss or petroleum jelly waterproofs allow pores are blocked in B 1 water (mainly) lost via stomata / pores / X or stomata on lower surface only 1 [6] Q4. **Quality of written communication** for ideas given in a sensible order; comparison made for geranium and cactus for each feature (ie not just list for geranium followed by list for cactus) + linking of feature & explanation 1 any **four** features + explanations from: cactus has:

accept converse points for geranium plant

Feature	Explanation
thicker cuticle	waterproof / keeps water in
smaller surface area	less water loss / less heat absorbed
fewer stomata	less water loss
stomata open at night / closed in day	(closed when warmest) – so less water loss
more widespread roots	quickly absorbs water (after rain) / access to bigger area for absorbing water / absorb more water
more water storage tissue	little water available in environment / can survive drought / avoids dehydration

[5]

Q5.

(a) water [1]

oxygen [1]

(sun) light or solar [1]

do not accept sun's

chlorophyll [1]

do **not** accept chloroplasts

(b) any **two** from:

stored as fructose
stored as sucrose
stored as starch
stored as oil **or** lipid
moved or transported away <u>in the phloem</u>
do **not** accept "stored" by itself

respired or burnt up for energy or fuel changed to protein changed to cellulose changed to fructose changed to starch changed to oil or lipid do **not** accept "food for plant" do **not** accept "used up" by itself 2 (c) (i) roots or root hair (cells) 1 (ii) the mineral salts are (dissolved) in water [1] water transports salts throughout the plant or water enables osmosis or diffusion to take place [1] 2 (d) (i) plants grow better with some nutrients than none plants grow better with nitrates than without comparison is needed accept "faster" as equivalent to "better" accept don't grow well with only water 1 (ii) 0.14(g)units not needed 1 (iii) making protein or amino acids do **not** accept help them grow accept named protein or DNA or chlorophyll 1 any **two** from: type or variety or starting weight or (iv) 2 (iii) size of seedlings keep the environment the same only if light **or** temperature **or** day length not already credited light temperature not heat time of growth do **not** accept the same equipment do **not** accept help them grow 1 day length

amount of culture solution or/size of

accept named protein, DNA chlorophyll

boiling tube number of seedlings per tube pH CO₂ humidity

[15]

Q6.

(a) capillaries

1

(b) (oxygen) in red blood cells **or** haemoglobin

the candidate **must** make clear which substance is which for **2** marks

1

(carbon dioxide dissolved in) the plasma

accept in haemoglobin in regions of <u>high carbon dioxide</u> concentration

accept for 1 mark oxygen + CO₂ is transported by red blood cells **or** haemoglobin

do **not** credit red + white blood cells **or** combinations of right + wrong answers

1

(c) **one** mark for each up to a maximum of **three**

red blood cells

award 1 mark for blood cells if no red or white

white blood cells (or named white blood cell up to 2)

platelets

urea

accept nitrogenous waste do **not** credit waste substances **or** products

minerals (or one named mineral)

accept ions or salts

vitamins

water

hormones (named hormone up to 3)

protein (named blood proteins up to 2)

glucose

accept other named soluble sugar do **not** credit sugar(s) **or** blood sugar **or** sucrose

fatty	acids	or	g	lycerol
-------	-------	----	---	---------

amino acids

digested food **or** nutrients (if individual foods not credited)

do not credit starch or carbohydrates

do not credit nutrition or food

do not credit oxygen

do not credit haemoglobin

carbon dioxide

accept nitrogen

antibodies

antitoxins

drugs **or** toxins (named up to 2)

bacteria or viruses

cholesterol

[6]

Q7.

(a) (i) light **or** solar

do **not** credit sun's energy

do **not** credit radiant

(ii) chlorophyll

(iii) chloroplast

(iv) $CO_2 + H_2O$

reactants identified (accept words)

 $C_6H_{12}O_6 + O_2$

products identified (accept words)

 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ balanced equation

(b) any **two** from:

1

1

1

1

1

1

increased CO₂ concentration

increased water supply

increased temperature (up to a point) increased light intensity

do **not** accept heat or warmth

altered light quality by less green **or** increasing other colours

2

- (c) any four points
 - palisade (mesophyll)
 - lots of chloroplasts or chlorophyll
 or main site for photosynthesis
 or absorb maximum amount of light
 - guard cells
 - CO₂ in **or** O₂ out **or** water vapour out
 - controls size of stoma or pores in leaf

allow stomata

4

[12]

Q8.

(a)

light

chlorophyll

carbon
dioxide

water

5

(b) (i) sugar or carbohydrate

1

(ii) it can be stored **or** it is insoluble

accept it has no osmotic effect

			·	1	
		(iii)	any one from: respires it or releases or transfers energy turns it or stores it as fructose or sucrose or lipid or protein or cellulose		
				1	
	(c)	(i)	photosynthesis	1	
		(ii)	any one from: flat surface stomata thin chloroplasts veins large surface area air spaces do not accept chlorophyll	1	[10]
Q9	1				
ЧЭ	(i)	the n	nass got less		
	(1)	11011	accept it got lighter		
			award 1 mark for water was lost from the plant	1	
			er was taken into the plant or roots rbed water		
			do not accept soaked into plant	1	
		leave	lost through transpiration or the es or evaporated from the leaves omata	1	
				1	
	(ii)	act a	neck the effect of the plant or to s a control or to show that it was lue to evaporation from water		
			do not accept to keep it fair or to check that it was fair		
			do not accept fair test	1	
					[4]

Q10.

(a) mesophyll / / / (all correct) sperm // x / (all correct) for 1 mark each

		_	
(b)	(i) absorbs light/to produce food/photosynthesis (allow references to gaseous exchange) for 1 mark	1	
	(ii) has chlorophyll/chloroplasts to absorb light/produce food for 1 mark each (if linked to gas exchange allow – moist surface/	1	
	dissolve gases)	2	[5]
Q11.			
(a)	quick cheap / many can be produced from one plant cuttings produce plants identical (to parents) / outcome known any two for 1 mark each	2	
(b)	idea that provides damp atmosphere / less likely to wilt reduces or stops transpiration or water loss / keeps it warmer (reject prevents animals eating it)		
	for 1 mark	1	[3]
Q12. (a)	water / damp / wet		
	or suitable temperature / warm / heat / hot or light / sun		
	(accept rooting powder / soil qualified e.g. fine / nutrients / fertiliser / minera (do NOT allow oxygen / carbon dioxide / food)	als)	
	for 1 mark	1	
(b)	advantage quick / cheap / several from one plant / known outcome / same as parent (reject all the same) disadvantage all the same / all get same disease		
	for 1 mark each	2	.
			[3]
Q13. (a)	(long) roots		
		1	

(b) prevents water from evaporating accept to reduce/stop water loss

[2]

Q14.

(a) 666

all required
accept a '6n 6 n n 6n' version of the balanced equation
provided it is correct in every detail

1

- (b) any two of
 - (presence of) chlorophyll or (amount of) chloroplasts accept green leaves (or other green parts)
 - (sufficient) light (intensity)
 - (light) of a suitable wavelength
 any light other than green light
 do not credit Sun's energy or sunshine or Sun

2

(c) guard cells

any two of

- * control by osmosis
- * the movement of gases

accept movement of carbon dioxide **or** oxygen **or** water vapour beware movement of CO₂ out accept a diagram or description

* through the stoma

2

palisade cells

any two of

- * near the upper surface
- * contain (a great) many or more chloroplasts
- * (so) contain the most chlorophyll

2

- (d) any three of
 - * for respiration
 - * conversion to (insoluble) starch

or to food store or to (other)carbohydrates

* (conversion to) sucrose or to food store or to (other) carbohydrates

or polysaccharides

do not credit just to grow or live

or survive

accept conversion to food store

or to (other) carbohydrates once only

- * (conversion to) lipids or fats or oils
- * (conversion to) amino acids **or** (plant) proteins **or** auxins **or** (plant) hormones **or** enzymes

[10]

Q15.

(a) (i) photosynthesis

1

(ii) respiration

do not credit combustion do not credit decay

1

(iii) dry

accept hot **or** windy **or** drought

1

- (b) any three from
 - * evaporation (of water)

or loss of water vapour

* (mostly) from the leaf / leaves

do not credit incorrect reference to leaves

* through the stomata

accept through each stoma accept through the stomas(sic)

* causing a pull

or causing an increase in osmotic potential (at the top of the plant)

or causing an increase in water potential (at the top of the plant) **or** causing a decrease in osmotic pressure (at the top of the plant)

* (so that) water moves up (through the plant)

do not credit water vapour moves up through the plant

- * as the transpiration stream
- * water enters through roots (and goes up plants)

3

[6]

