1.
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

2.
$$\sqrt{a} \div \sqrt{b} = \sqrt{\frac{a}{b}}$$

Indices

1.
$$a^m x a^n = a^{m+n}$$

2.
$$a^{m}/a^{n} = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

4.
$$a^0 = 1$$

5.
$$a^{-n} = \frac{1}{a^n}$$

6.
$$a_{m}^{\frac{1}{n}} = {}^{n}Va$$

7.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

Rules of rationalizing

• Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the top and bottom by \sqrt{a} .

• Fractions in the form $\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}$, multiply the top and bottom by $\sqrt{a}-\sqrt{b}$.

• Fractions in the form $\sqrt[n]{a-\sqrt{b}}$, multiply the top and bottom by $\sqrt{a}+\sqrt{b}$.

Logarithms

1.
$$\log a + \log b = \log ab$$

2.
$$\log a - \log b = \log \frac{a}{b}$$

3.
$$a \log_x y = \log_x y^a$$

4.
$$\log_a a = 1$$

5.
$$\log x = \frac{\log b^x}{\log B}$$

6.
$$\log_a 1 = 0$$

7.
$$\log_{a} b = \frac{1}{\log b}$$
 a

³SCA_{CCA}

Quadratic Equation

Solving quadratic equation

Quadratic equation can be solved by:

- 1. factorization
- 2. completing the square:

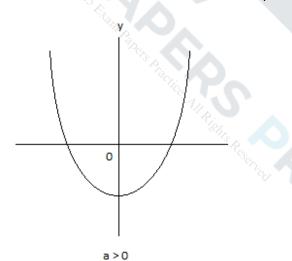
$$x^{2} + bx = (x + \frac{b}{2})^{2} - (\frac{b}{2})^{2}$$

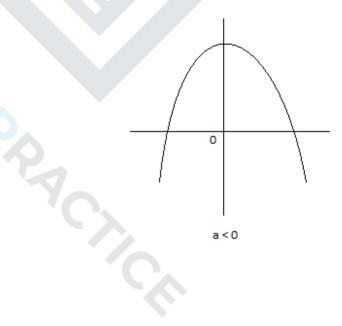
3. using the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4\alpha}}{2a}$$

Nature of roots

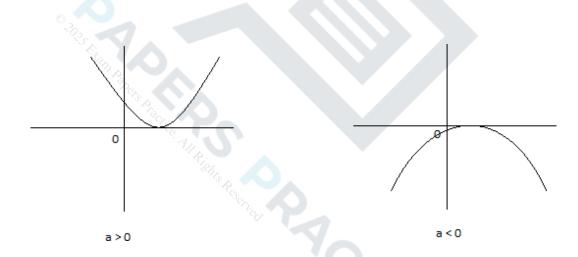
- $ax^2 + bx + c = 0$
- 1. If $b^2 4ac > 0$, roots are real & different / real and distinct and the curve $y = ax^2 + bx + c$ will cut the x axis at two real and distinct points





2. If $b^2 - 4ac < 0$, roots are not real/ imaginary / complex and the curve $y = ax^2 + bx + c$ will lie entirely above the x axis if a > 0 and entirely below the x axis if a < 0.

3. If $b^2 - 4ac = 0$, roots are real and equal / repeated / coincident and the curve $y = ax^2 + bx + c$ touches the x-axis.



4. If $b^2 - 4ac \ge 0$, roots are real.

Solving Quadratic Inequality

When α and β (α < β) are two roots of $ax^2 + bx + c = 0$ (a>0) and

1. If
$$ax^2 + bx + c > 0$$
, range of values of x : $x < \alpha$, $x > \beta$

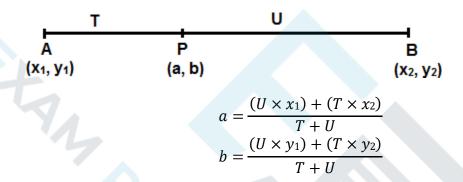
2. If
$$ax^2 + bx + c \ge 0$$
, range of values of x : $x \le \alpha$, $x \ge \beta$

3. If
$$ax^2 + bx + c < 0$$
, range of values of x : $\alpha < x < \beta$

4. If
$$ax^2 + bx + c \le 0$$
, range of values of x : $\alpha \le x \le \beta$

Co – ordinate Geometry

- 1. The distance between two points A(x_1 , y_1) and B(x_2 , y_2) is $\sqrt{(x_2-x_1)+(y_2-y_1)}$ 2. The gradient of the line joining A(x, y) and B(x, y) is x_2-x_1
- 3. The coordinates of the mid-point of the line joining $A(x_1, y_1)$ and $B(x_2, y_2)$ are $\left(\frac{x_1+x_2}{2}\right), \left(\frac{y_1+y_2}{2}\right)$
- 4. Finding coordinates when a point divides a line internally.



- 5. The equation of the straight line having a gradient m and passing through the point $(x_1,$ y_2) is given by : $y - y_1 = m (x - x_1)$.
- 6. Two lines are parallel if their gradients are equal.
- 7. Two lines are perpendicular to each other if the product of their gradients is -1.

Equation of circle

Centre(a, b) and radius = r

$$(x-a)^2 + (y-b)^2 = r^2$$

Arithmetic Progression (A.P)

- 1. nth term = a + (n-1)d
- 2. $S_n = \frac{n}{2} \{ 2a + (n-1)d \}$

Geometric Progression (G.P)

1. nth term =
$$ar^{n-1}$$

2.
$$S_n = \frac{a(r^n-1)}{r-1}$$
 , $r > 1$

2.
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 , $r > 1$
3. $S_n = \frac{a(1 - r^n)}{1 - r}$, $r < 1$

$$\#-1 < r < 1 \text{ or } |r| < 1.$$

The series is convergent. It has sum to infinity.

$$1. \quad \mathsf{S}_{\alpha} = \frac{a}{1-r}$$

Otherwise the series is divergent. It has does not have sum to infinity.

UI Riellis Reserved

Differentiation

- 1. For a curve y = f(x) represents the gradient of the tangent to the curve at any point x.
- 2. If $y = ax^n$, then $\frac{dy}{dx} = anx^{n-1}$, where a and n are constants. 3. $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$

- 4. If y is a function of u, and u us a function of x, then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{du}$ (chain rule). 5. If y, u and v are functions of x and y = uv, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ (product rule).
- 6. If y, u and v are functions of x and $y = \frac{u}{v}$, then $\frac{dy}{dx} = \frac{v^{\frac{du}{u}} \frac{dv}{u}}{v^2}$ (quotient rule).

The following are true only when x is in radians:

7.
$$\frac{d}{dx}(\sin x) = \cos x$$

7.
$$\frac{d}{dx}(\sin x) = \cos x$$
8.
$$\frac{d}{dx}(\cos x) = -\sin x$$

Other formulae

$$9. \quad \frac{d}{d} \left(\sin^n x \right) = n \sin^{n-1} x \left(\cos x \right)$$

9.
$$\frac{d}{dx}(\sin^n x) = n \sin^{n-1} x (\cos x)$$
10.
$$\frac{d}{dx}(\cos^n x) = n \cos^{n-1} x (-\sin x)$$

Application of Differentiation

- 11. For an increasing function f(x) in the interval (a, b) f'(x) > 0 in the interval $a \le x \le b$.
- 12. For an decreasing function f(x) in the interval (a, b) f'(x) < 0 in the interval $a \le x \le b$.
- 13. Stationary points or turning points of a function y = f(x) occur when $\frac{dy}{dx} = 0$.
- 14. The second derivative $(\frac{d^2y}{dx^2})$ determines the nature of the stationary points:
 - (a) If $\frac{d^2y}{dx^2}$ is negative, the stationery point is a maximum point.
 - (b) If $\frac{dx^2}{dx^2}$ is positive, the stationary point is a minimum point.
 - (c) If $\frac{1}{dx^2}$ is zero, the point could be either a maximum or a minimum point or a point of
 - (d) If $\frac{d^2y}{dx^2}$ is zero $\frac{d^3y}{dx}$ is not equal to zero, then the stationary point is point of inflexion.
- 15. To sketch a curve, note
 - (i) the points where x = 0 or y = 0
 - (ii) the nature and position of the stationary points
 - (iii) the direction of the curve as x and y approach infinity.
 - (iv) the interval on which the gradient is positive or negative.

Integration

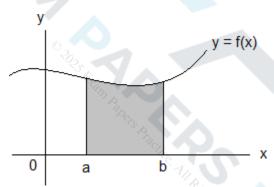
1.
$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c \qquad n \neq -1$$

2. $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c$

2.
$$J(ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c$$

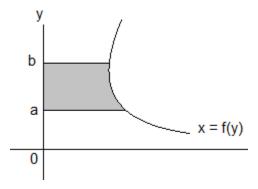
- 3. $J\cos x \, dx = \sin x + c$

- 3. $\int \cos x \, dx = \sin x + c$ 4. $\int \sin x \, dx = -\cos x + c$ 5. $\int \cos bx \, dx = \frac{1}{b} \sin bx + c$ 6. $\int \sin bx \, dx = -\frac{1}{b} \cos bx + c$ 7. $\int \cos(ax + b) \, dx = \frac{1}{a} \sin(ax + b) + c$ 8. $\int \sin(ax + b) \, dx = -\frac{1}{a} \cos(ax + b) + c$
- 9. The area bounded by the curve y = f(x), the x-axis and the lines x = a and x = b is given by $\int_{a}^{b} y \, dx.$



10. The area bounded by the curve x=f(y), the y-axis and the lines y=a and y=b is given by $\int_{a}^{b} x \, dy.$

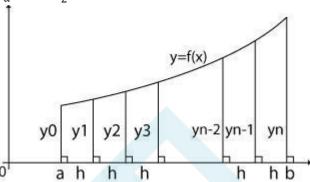
(C)



11. Area between g(x) and $f(x) = \int_a^b |g(x) - f(x)| dx$

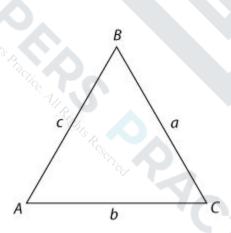
- 12. When the area bounded by y = f(x), the x-axis and the lines x = a and x = b is rotated through 360° about the x-axis, the volume of solid of revolution is given by $\pi \int_a^b y^2 \, dx$.
- 13. When the area bounded by y = f(x), the y-axis and the lines y = a and y = b is rotated
- through 360° about the *y*-axis, the volume of solid of revolution is given by $\pi \int_a^b x^2 \, dy$.

 14. **The trapezium rule**: $\int_a^b y \, dx = \frac{1}{2} h\{(y_0 + y_n) + 2y_1 + y_2 + \cdots y_{n-1})\}$, where $h = \frac{1}{n}$



Triangle

Sine rule



$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$\cos A = \frac{c^2 + b^2 - a^2}{2bc}$$

Area of triangle

$$area = \frac{1}{2}ab \sin C$$

Circular Measure

- 1. \prod radian = 180°
- 2. For a sector of a circle enclosed by two radii that subtend an angle of θ radians at the centre, the arc length s is given by

$$s = r\theta$$

and the area of the sector A is given by

$$A = \frac{1}{2} r^2 \theta$$

where r is the radius of the circle.

Binomial Expansion

1.
$$n! = n(n-1)(n-2)(n-3)...$$

2.
$$\frac{n!}{(n-2)!} = \frac{n(n-1)(n-2)}{(n-2)} = n(n-1)$$

3.
$$n_{c_1} = n$$

4.
$$nc_2 = \frac{n(n-1)}{2!}$$

5.
$$n_{c_3} = \frac{n(n-1)(n-2)(n-3)}{3!}$$

6.
$$(a + x)^n = a^{n+1} + n_c a^{n-1}x + n_c a^{n-2}x^2 + n_c a^{n-3}x^3 + \dots$$

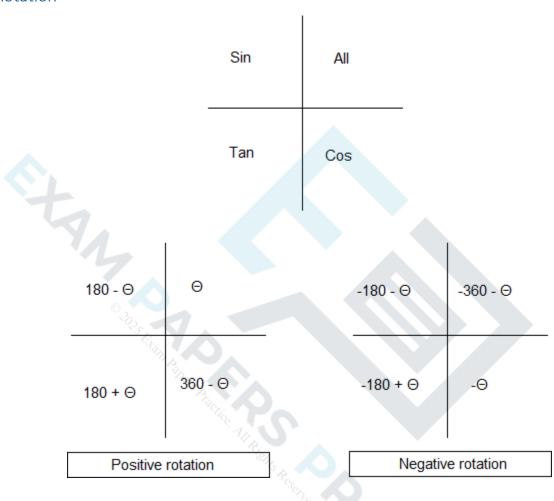
5.
$$n_{c_3} = \frac{n(n-1)(n-2)(n-3)}{3!}$$

6. $(a+x)^n = a^n + n_c \frac{a^{n-1}x + n_c}{2!} \frac{a^{n-2}x^2 + n_c}{3!} \frac{a^{n-3}x^3 + \dots}{3!}$
7. $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \dots$
8. $(r+1)^{th} \text{ term} = ({}^n c_r x^{n-r} y^r)$

8.
$$(r + 1)^{th}$$
 term = $({}^{n}C_{r} x^{n-r} y^{r})$

Trigonometry

Rotation



1.
$$\sin \theta = \frac{opp}{hyp}$$

2.
$$\cos \theta = \frac{adj}{hyp}$$

3.
$$\tan \theta = \frac{opp}{adj}$$

4.
$$\sin^2 + \cos^2 x = 1$$

4.
$$\sin^2 + \cos^2 x = 1$$

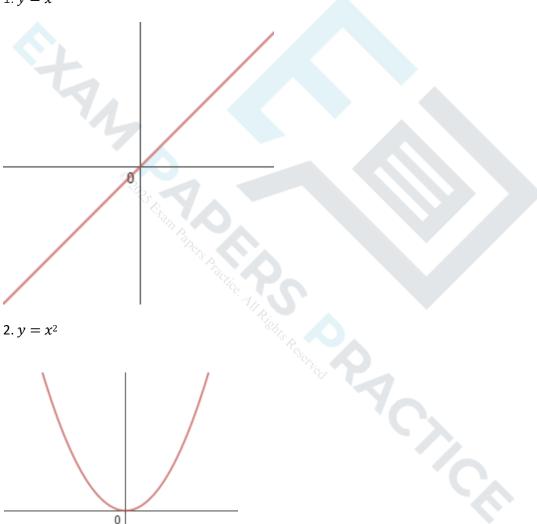
5. $\tan A = \frac{\sin A}{\cos A}$

Ratios

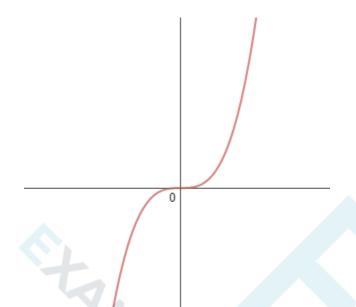
The trigonometric ratios of 30°, 45° and 60° have exact forms, given below:

$\sin 30^{\circ} = \frac{1}{2}$	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$	$\tan 30^{\circ} = \frac{\sqrt{3}}{3}$
$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$	$\cos 45^\circ = \frac{\sqrt{2}}{2}$	tan 45° = 1
$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$	$\cos 60^{\circ} = \frac{1}{2}$	$\tan 60^{\circ} = \sqrt{3}$

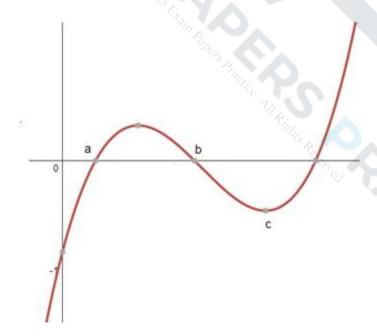
Graphs



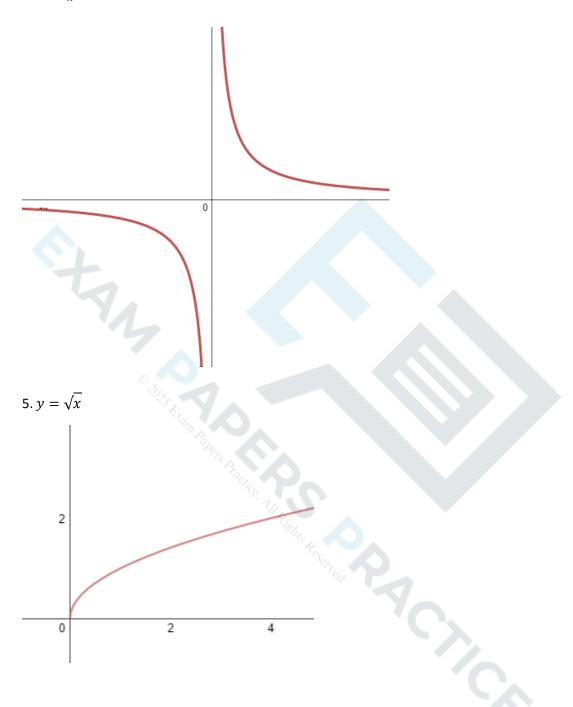
3.
$$y = x^3$$

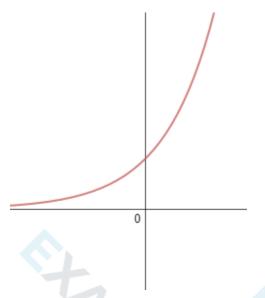


4.
$$y = (x - a)(x - b)(x - c)$$

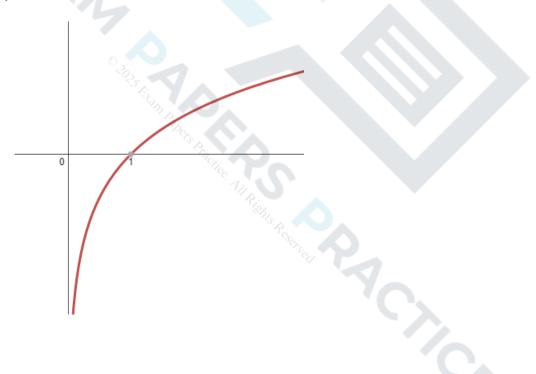


4.
$$y = \frac{1}{x}$$

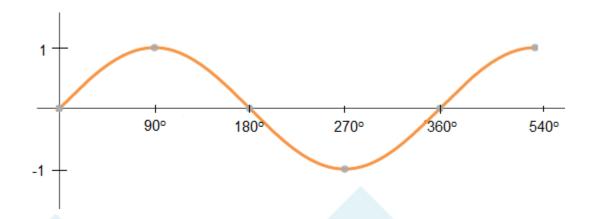




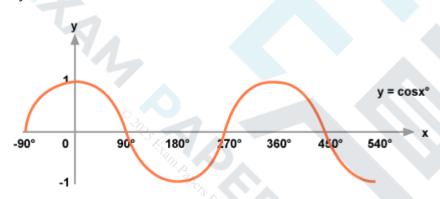
$7. y = \ln x$



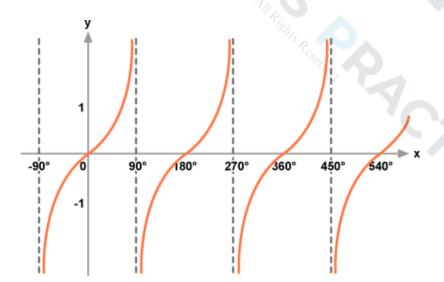
$$8. y = \sin x$$



$9. y = \cos x$



10. $y = \tan x$



Transformation

f(x + a) is a translation of -a in the x-direction.

f(x) + a is a translation of +a in the y-direction.

f(ax) is a stretch of $\frac{1}{a}$ in the x-direction (multiply x-coordinates by $\frac{1}{a}$).

af(x) is a stretch of a in the y-direction (multiply y-coordinates by a).

