Organisation of an Ecosystem

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641

Subject: Biology

Exam board: GCSE AQA

Topic: Organisation of an Ecosystem

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
Q1.
Earthworms are small animals that live in soil. Earthworms have no specialised gas exchange system and absorb oxygen through their skin.
(a) What is the name of the process in which oxygen enters the skin cells?

Tick one box.

Active transport \square

Diffusion

Osmosis

Respiration

The table below shows information about four skin cells of an earthworm.

Cell	Percentage of oxygen	
	Outside cell	Inside cell
A	9	8
B	12	8
C	12	10
D	8	12

(b) Which cell has the smallest difference in percentage of oxygen between the outside and the inside of the cell?

Tick one box.

(c) Which cell will oxygen move into the fastest?

Tick one box.

EXAM PAPERS PRACTICE

(d) Earthworms have a large surface area to volume ratio.

Suggest why a large surface area to volume ratio is an advantage to an earthworm.
\qquad
\qquad
\qquad
\qquad
(e) The earthworm uses enzymes to digest dead plants.

Many plants contain fats or oils.
Which type of enzyme would digest fats?
\qquad
\qquad
\qquad
\qquad
(f) Earthworms move through the soil.

This movement brings air into the soil.
Dead plants decay faster in soil containing earthworms compared with soil containing no earthworms.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ——

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(g) When earthworms reproduce, a sperm cell from one earthworm fuses with an egg cell from a different earthworm.

Name the process when an egg cell and a sperm cell fuse.
\qquad
\qquad
(h) Some types of worm reproduce by a process called fragmentation.

In fragmentation, the worm separates into two or more parts. Each part grows into a new worm.

What type of reproduction is fragmentation?
\qquad
\qquad

Q2.
Some weed killers are selective.
Selective weed killers kill broad-leaved weed plants, but do not kill narrow-leaved grass plants.

The diagram below shows some weeds growing on a grassy lawn.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Some students investigated the effect of a selective weed killer on the weeds growing in a lawn. They used $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ quadrats.

The lawn was 20 metres long and 10 metres wide.
This is the method used.

1. Divide the lawn into two halves, side \mathbf{A} and side \mathbf{B}.
2. Place 5 quadrats in different positions on side \mathbf{A}.
3. Place 5 more quadrats in different positions on side \mathbf{B}.
4. Count the number of weed plants in each quadrat.
5. Spray side A with weed killer solution.
6. Spray side \mathbf{B} with the same volume of water.
7. Repeat steps 2-4 after 2 weeks.
(a) Suggest a method the students should have used to place each quadrat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give the reason for the method you suggested in part (a).
\qquad
\qquad
\qquad
\qquad
(c) Explain why the students used water on one side of the lawn instead of weed killer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

The table below shows the students' results.

Number of weeds per quadrat			
At start		After 2 weeks	
Side A (Weed killer)	Side B (Water)	Side A (Weed killer)	Side B (Water)
8	14	3	8
2	9	4	15
Mean	10	9	2
12	16	2	7
	13	3	1

(d) Calculate the mean value, \mathbf{X}, in the table above.
\qquad
\qquad
\qquad
\qquad
Mean value, $\mathbf{X}=$
(e) Calculate the percentage decrease in the number of weeds on side \mathbf{A} after 2 weeks.

Use the following equation:

$$
\text { percentage decrease }=\frac{(\text { mean at start }- \text { mean after } 2 \text { weeks })}{\text { mean at start }} \times 100
$$

\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Percentage decrease =

\qquad
(f) One student thought the results were not valid.

Suggest one improvement the students could have made to the method to make the results more valid.

Give the reason for your answer.
Improvement
\qquad
\qquad

Reason
\qquad
\qquad

Q3.
Many scientists think that global air temperature is related to the concentration of carbon dioxide in the atmosphere.

The graph below shows changes in global air temperature and changes in the concentration of carbon dioxide in the atmosphere.

(a) Complete the table below.

Use information from the graph above.
Choose answers from the box.
You may use each answer once, more than once or not at all.

constant	decreasing	increasing

	$1960-1977$	$1977-2003$	$2003-2015$
Trend in carbon dioxide concentration	Increasing		
Trend in air temperature			

Many scientists think that an increase in carbon dioxide concentration in the atmosphere causes an increase in air temperature.
(b) How would an increase in the concentration of carbon dioxide in the atmosphere cause an increase in air temperature?

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(c) Evaluate evidence for and against the theory that an increase in the concentration of carbon dioxide in the atmosphere causes an increase in air temperature.

Use data from the graph above and your own knowledge.
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad

In each year, the concentration of carbon dioxide in the atmosphere is higher in the winter than in the summer.
(d) Give one human activity that could cause the higher concentration of carbon dioxide in the winter.
\qquad
\qquad
\qquad
\qquad
(e) Give one biological process that could cause the lower concentration of carbon dioxide in the summer.
\qquad
\qquad
\qquad
\qquad
(f) Give two possible effects of an increase in global air temperature on living organisms.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad -

EXAM PAPERS PRACTICE

Some students investigated the size of a population of dandelion plants in a field.
The diagram below shows the field.

The students:

- placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ square quadrat at 10 random positions in the field - counted the number of dandelion plants in each quadrat.

The table below shows the students' results.

Quadrat number	Number of dandelion plants
1	6
2	9
3	5
4	8
5	0
6	10
7	2
8	1

EXAM PAPERS PRACTICE

9	8
10	11

(a) Why did the students place the quadrats at random positions?
\qquad
\qquad
\qquad
\qquad
(b) Estimate the total number of dandelion plants in the field.

Calculate your answer using information from the diagram and the table above.

Give your answer in standard form.
\qquad
-
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Total number of dandelion plants =

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Quadrats 5, 7 and 8 were each placed less than 10 metres from the woodland.
These quadrats contained low numbers of dandelion plants.
The students made the hypothesis:
'Light intensity affects the number of dandelion plants that grow in an area.'
(c) Plan an investigation to test this hypothesis.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
(d) Light is an environmental factor that affects the growth of dandelion plants.

Give two other environmental factors that affect the growth of dandelion plants.
1.
\qquad
-
2.
\qquad

Q5.
Figure 1 shows:

- a food chain for organisms in a river
- the biomass of the organisms at each trophic level.

Figure 1

EXAM PAPERS PRACTICE

Algae $\longrightarrow \begin{gathered}\text { Invertebrate } \\ \text { animals }\end{gathered} \longrightarrow$ Small fish \longrightarrow Large fish
Biomass in $\mathrm{g} / \mathrm{m}^{2}$: $\quad 840$ 200

40
10
(a) Draw a pyramid of biomass for the food chain in Figure 1 on Figure 2.

You should:

- use a suitable scale
- label the x-axis
- label each trophic level.

Figure 2

(b) Calculate the percentage of the biomass lost between the algae and the large fish.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage loss = \qquad
(c) Give one way that biomass is lost between trophic levels.
\qquad
\qquad
\qquad
-
(d) A large amount of untreated sewage entered the river. Many fish died.

Untreated sewage contains organic matter and bacteria.
Explain why many fish died.
\qquad
-
\qquad —

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad

Q6.
Scientists want to breed cows that produce milk with a low concentration of fat.
Figure 1 shows information about the milk in one group of cows.
The cows were all the same type.
Figure 1

EXAM PAPERS PRACTICE

(a) In Figure 1 the mean percentage of fat in the milk is equal to the modal value.

Give the mean percentage of fat in the milk of these cows.
Mean percentage $=$ \qquad
(b) A student suggested:
'The percentage of fat in milk is controlled by one dominant allele and one recessive allele.'

How many different phenotypes would this produce?
Tick one box.

2	

3	

\square
(c) Give the evidence from Figure 1 which shows the percentage of fat in the milk is controlled by several genes.
\qquad
\qquad
\qquad
\qquad
(d) One of the genes codes for an enzyme used in fat metabolism.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

A mutation in this gene causes a reduction in milk fat.
The mutation changes one amino acid in the enzyme molecule.

Explain how a change in one amino acid in an enzyme molecule could stop the enzyme working.
\qquad

The scientists found one cow with a mutation.
The cow's milk contained only 2.9% fat.
Figure 2 shows the percentage of fat in the milk of cattle related to the cow with the mutation.

The values for male cattle are the mean values of their female offspring.
Figure 2

EXAM PAPERS PRACTICE

Key
Female with low-fat milk
Male whose female offspring have low-fat milk
Female with high-fat milk
\square Male whose female offspring have high-fat milk
(e) Animal 8 is homozygous.

The mutation in animal 7 produced a dominant allele for making low-fat milk.
Give evidence from Figure 2 that animal 7 is heterozygous.
\qquad
\qquad
\qquad
\qquad
(f) Animals 7 and 8 produced 11 offspring. These offspring were produced by in vitro fertilisation (IVF).

The embryos from IVF were transferred into 11 other cows.
Suggest why IVF and embryo transfer were used rather than allowing animals 7 and 8 to mate naturally.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
(g) Draw a Punnett square diagram to show a cross between animals 7 and 8 .

Identify which offspring produce low-fat milk and which offspring produce highfat milk.

Use the following symbols:
D = dominant allele for making low-fat milk
d = recessive allele for making high-fat milk
(h) The scientists want to produce a type of cattle that makes large volumes of low-fat milk.

The scientists will selectively breed some of the animals shown in Figure 2.
Describe how the scientists would do this.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
\qquad -

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad

Q7.
Fresh milk contains bacteria.
Some students investigated decay caused by the bacteria in fresh milk.
This is the method used:

1. Put $200 \mathrm{~cm}^{3}$ of fresh milk in a sterilised flask.
2. Leave the flask for 3 days at $20^{\circ} \mathrm{C}$.
3. Measure the pH of the milk each day using universal indicator paper.

Figure 1 and Figure 2 show the apparatus the students used.

EXAM PAPERS PRACTICE

Figure 1

Figure 2

(a) Give one reason why the students sterilised the flask before adding the milk.
\qquad
\qquad
\qquad
\qquad
(b) Describe how the students could sterilise the flask in a school laboratory.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Why did the students put a cap on top of the flask?
\qquad
\qquad
\qquad
\qquad
(d) The table shows the students' results.

Table 1

Time in days	Colour of universal indicator paper	$\mathbf{p H}$
0	Olive-green	
1	Olive-green	
2	Olive-green	
3	Orange-green	

Complete Table 1.
Use information from Figure 2.
(e) The students repeated their investigation with two changes to the method:

- they used a pH meter to measure the pH
- they left the apparatus set up for 6 days instead of for 3 days.

Suggest a reason why each of these changes improves the investigation.
Using a pH meter

EXAM PAPERS PRACTICE

Leaving the apparatus set up for 6 days
\qquad
\qquad
\qquad

Table 2 shows the results of the students' second investigation.

Table 2

Time in days	$\mathbf{p H}$
0	7.0
1	7.0
2	6.7
3	6.0
4	5.0
5	4.5
6	4.5

(f) Complete the graph below.

You should:

- label the x-axis
- plot the data from Table 2
- draw a line of best fit.

E目
EXAM PAPERS PRACTICE

(4)
(g) Give one reason for each of the following.

Use information from Table 2 and the graph above.
The pH did not change during the first day:

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

The pH decreased after day 1 :
\qquad
\qquad

There was no change in pH between days 5 and 6 :
\qquad
\qquad
\qquad
(h) The students did both of their investigations at $20^{\circ} \mathrm{C}$

The students then repeated the investigation with the pH meter, but at $25^{\circ} \mathrm{C}$
Predict how the new results would be:

- similar to the results at $20^{\circ} \mathrm{C}$
- different from the results at $20^{\circ} \mathrm{C}$

Similarity
\qquad
\qquad

Difference
\qquad
\qquad
\qquad

Q8.
Pollution of rivers with untreated sewage can kill plants and animals.
Figure 1 shows a sprinkler bed at a sewage works.
The sewage trickles slowly downwards over the surfaces of the stones.

EXAM PAPERS PRACTICE

Figure 1

Some of the microorganisms on the stones feed on organic matter in the sewage.
The treated sewage is safe enough to pass into a river.
(a) Most of the microorganisms in the sprinkler bed respire aerobically.

Describe two features of the sprinkler bed that encourage aerobic respiration.
Use information from Figure 1.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
-

Figure 2 shows the feeding relationships between the microorganisms in the sprinkler bed.

EXAM PAPERS PRACTICE

Figure 2

(b) Which organisms in Figure 2 are producers?

Tick one box.

Bacteria

Green algae

Large protists

Small protists \square
(c) Name one organism in Figure 2 which is both a primary and a secondary consumer.
\qquad
\qquad
(d) The bacteria are decomposers.

Figure 2 shows that the bacteria change organic matter into carbon dioxide and inorganic mineral ions.

Describe how the bacteria do this.

EXAM PAPERS PRACTICE
\qquad

Q9.
The limpet is a snail-like animal that lives attached to a rock on the seashore.
Some students investigated variation in the size of limpets living on two seashores:

- one shore was in a sheltered bay
- the other shore was exposed to the full force of the sea.

The students measured the heights (\mathbf{H}) and widths (\mathbf{W}) of 60 limpets on each shore.
Figure 1 shows a limpet and the measurements made by the students.

EXAM PAPERS PRACTICE
Figure 1

(a) On each shore, the students measured a large number of limpets at random locations.

Explain why the students did this.
Large number of limpets:
\qquad
\qquad

Random locations:
\qquad
\qquad

The students calculated $\frac{\mathrm{H}}{\mathrm{W}}$ for each limpet.
The table below shows the students' results.

EXAM PAPERS PRACTICE

$\frac{\mathrm{H}}{\mathbf{W}}$	Sheltered shore		Exposed shore				
	Score	Number	Score	Number			
0.21-0.25			\|			3	
0.26-0.30	1	1	HH III	8			
0.31-0.35	\|				4	HHHHHI	16
0.36-0.40	HHHH11	12	HHHHHHIII				
0.41-0.45	HH以HIII	14	HHIIII				
0.46-0.50	HHHHIII	13	\|				
0.51-0.55	HHIIII	9	1				
0.56-0.60	\|				4		
0.61-0.65	II	2					
0.66-0.70	1	1					

(b) Complete the table above.

Figure 2 shows some of the results.

EXAM PAPERS PRACTICE

Figure 2

(c) Complete Figure 2.
(d) Compare the patterns in the results for the exposed shore and the sheltered shore.

Use information from Figure 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad

Figure 3 shows how the students measured the width of a limpet with a vernier calliper.

Figure 3

(e) One student recorded

- sheltered shore: mean $\frac{H}{W}=0.4659182$
- exposed shore: mean $\frac{H}{W}=0.3542183$

The student's teacher stated that the data did not justify such a high number of decimal places.

Give the two mean values corrected to an appropriate number of decimal places.

Sheltered shore: mean $\frac{\mathrm{H}}{\mathrm{W}}=$ \qquad

For more help, please our website www.exampaperspractice.co.uk

Exposed shore: mean $\frac{H}{W}=$
(f) A limpet clings to a rock on the sea shore using its muscular 'foot', as shown in Figure 1.

Scientists have found that limpets can exert a force of 2 newtons $/ \mathrm{cm}^{2}$ of 'foot'.

To remain attached to its rock, a limpet must exert a force at least as large as the force of the waves.

Calculate the maximum wave force the limpet shown in Figure 3 could withstand without being knocked off its rock.

Assume that the surface of the foot is a circle.
The area of a circle is πr^{2}.
Take the value of π to be 3.14 .
\qquad

Maximum wave force = \qquad newtons
(g) Suggest two reasons why your answer to Question (e) might not be very accurate.
1.
\qquad

EXAM PAPERS PRACTICE
2.
\qquad -
\qquad -
(h) Suggest biological reasons for the lower mean $\frac{H}{W}$ values for limpets on the exposed shore.
\qquad
\qquad
\qquad

\qquad
-
\qquad
-
\qquad

\qquad
\qquad

Q10.
The diagram below shows a food chain in a garden.

Lettuce © destillat/iStock/Thinkstock; Snail ©Valengilda/iStock/Thinkstock; Shrew © GlobalT/iStock/Thinkstock
(a) Name one consumer shown in the diagram above.

EXAM PAPERS PRACTICE
(b) Name one carnivore shown in the diagram above.
\qquad
\qquad
(c) A disease kills most of the shrews in the garden.

Suggest why the number of snails in the garden may then increase.
\qquad
\qquad
\qquad
\qquad
(d) What is the name given to all the snails in the garden shown in the diagram above?

Tick one box.

(e) Which pyramid of biomass is correct for the food chain shown in the diagram above?

Tick one box.

A \square
B \square
C \square

For more help, please our website www.exampaperspractice.co.uk
(f) Some snails ate some lettuces.

The lettuces contained 11000 kJ of energy.
Only 10% of this energy was transferred to the snails.
Calculate the energy transferred to the snails from the lettuces.
\qquad

Energy $=\ldots \mathrm{kJ}$
(g) Give one reason why only 10% of the energy in the lettuces is transferred to the snails.

Tick one box.

The lettuces carry out photosynthesis

The snails do not eat the roots of the lettuces \square

Not all parts of a snail can be eaten \square
(h) Abiotic factors can affect the food chain.

Wind direction is one abiotic factor.
Name one other abiotic factor.
\qquad
\qquad

Q11.

A student was asked to estimate how many clover plants there are in the school field.

The image below shows the equipment used.

For more help, please our website www.exampaperspractice.co.uk

Tape

Identification key

Not drawn to scale

This is the method used.

1. Throw a quadrat over your shoulder.
2. Count the number of clover plants inside the quadrat.
3. Repeat step $\mathbf{1}$ and step $\mathbf{2}$ four more times.
4. Estimate the number of clover plants in the whole field.
(a) What is the tape in the image above used for in this investigation?
\qquad
\qquad
\qquad
\qquad
(b) The teacher told the student that throwing the quadrat over his shoulder was not random.

The method could be improved to make sure the quadrats were placed randomly.

Suggest one change the student could make to ensure the quadrats were placed randomly.
\qquad
\qquad
\qquad
\qquad
(c) How could the student improve the investigation so that a valid estimate can be made?

EXAM PAPERS PRACTICE

Tick two boxes.

Weigh the clover plants

Compare their results with another student's results \square

Count the leaves of the clover plants

Place more quadrats

Place the quadrats in a line across the field \square
(d) The table below shows the student's results.

Quadrat number	Number of clover plants counted
1	11
2	8
3	11
4	9
5	1
Total	40

The area of the school field was $500 \mathrm{~m}^{2}$.
The quadrat used in the table above had an area of $0.25 \mathrm{~m}^{2}$.
Calculate the estimated number of clover plants in the school field.
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Estimated number of clover plants =

\qquad
(e) What was the mode for the results in the table above?

Tick one box.

(f) Suggest which quadrat could have been placed under the shade of a large tree.

Give one reason for your answer.
Quadrat number \qquad
Reason
\qquad
\qquad
\qquad

Q12.

A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'
Look at the table below.

Type of material to compost	Mass of carbon in sample in \mathbf{g}	Mass of nitrogen in sample in g	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
\qquad
Ratio \qquad
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
\qquad
\qquad
\qquad
(d) Some of the leaves from the gardener's strawberry plant die.

The dead leaves fall off the strawberry plant onto the ground.

EXAM PAPERS PRACTICE

The carbon in the dead leaves is recycled through the carbon cycle.
Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry A

Strawberry B

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Give three possible reasons that may have caused strawberry \mathbf{A} to decay.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
3.
\qquad
\qquad

Q13.

A student plans an investigation using mould.
(a) Mould spores are hazardous.

Give one safety precaution the student should take when doing this investigation.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(b) A student made the following hypothesis about the growth of mould:
'The higher the temperature, the faster the growth of mould'.
The student planned to measure the amount of mould growing on bread.
The student used the following materials and equipment:

- slices of bread
- sealable plastic bags
- a knife
- a chopping board
- mould spores.

Describe how the materials and equipment could be used to test the hypothesis.
\qquad
\qquad -
(c) Give one variable the student should control in the investigation.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(d) Another student did a similar investigation.

The diagram below shows the results.

Determine the rate of mould growth at $42^{\circ} \mathrm{C}$ between day 2 and day 7 .
\qquad
\qquad
\qquad
\qquad
Rate of mould growth = \qquad units per day
(e) The growth of mould shows decomposition of the bread.

Give a conclusion about decomposition from the results in the diagram above.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Q14.
Figure 1 shows how energy and biomass pass along a food chain.
Figure 1

(a) The parsley shown in Figure 1 carries out photosynthesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Which diagram shows the pyramid of biomass for the food chain in Figure 1?

Why is photosynthesis important in the food chain?
Tick (\checkmark) one box.

\square
\square
\square

For more help, please our website www.exampaperspractice.co.uk
(c) Figure 2 shows the ways a swallowtail caterpillar transfers 20 J of energy from food.

Figure 2

What percentage of the energy in the caterpillar's food is used for growth?
\qquad
\qquad
\qquad
\qquad
Percentage $=$ \qquad
(d) The organisms in the food chain are adapted for survival.
(i) Figure 3 shows a swallowtail caterpillar seen from the back.

Figure 3

Suggest how the swallowtail caterpillar shown in Figure $\mathbf{3}$ is adapted to reduce the chance of being eaten by blue tits.
\qquad
\qquad

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\square
(ii) Figure 4 shows a hawk.

Figure 4

Suggest two ways that the hawk is adapted to catch and kill blue tits.
1.
\qquad
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad

Blue tit: ©JensGade/iStock
Parsley: © Warren_Price/iStock
Caterpillar ©prettyzhizhi/iStock
Hawk: © kojihirano/iStock
Swallowtail caterpillar: © Anna_Po/iStock

For more help, please our website www.exampaperspractice.co.uk

Q15.

Students investigated decomposition.
The students:

- put some decaying grass cuttings into a vacuum flask
- put a carbon dioxide sensor and a temperature sensor in the flask
- attached the sensors to a data logger
- closed the flask with cotton wool.

A vacuum flask was used to reduce the loss of thermal energy.
Figure 1 shows the investigation.
Figure 1

(a) Give one advantage of using a temperature sensor attached to a data logger instead of a thermometer.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the results from the data logger for carbon dioxide concentration in the flask for the next 25 days.

Figure 2

EXAM PAPERS PRACTICE

(i) Why did the concentration of carbon dioxide in the flask increase?
\qquad
(ii) Suggest what has happened in the flask to cause the carbon dioxide concentration to level off after 20 days.
\qquad
\qquad
\qquad
\qquad

EXAM PAPERS PRACTICE

Q16.

Malaria is a disease caused by a microorganism carried by mosquitoes.
The microorganism is transferred to humans when adult female mosquitoes feed on human blood.

The figure below shows the life cycle of a mosquito.

The World Health Organisation estimates that 3×10^{8} people are infected with malaria every year.

Scientists estimate that malaria kills 2×10^{6} people every year.
The people who are infected with malaria but do not die, may be seriously ill and need health care for the rest of their lives.
(a) Based on the estimated figures, what percentage of people infected with malaria die from the disease?
\qquad
\qquad

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
(b) An internet article states:

1 Mosquito larvae are at the start of the food chain for some fish.
2 Adult mosquitoes provide food for bats and birds.
3 Mosquitoes are also important in plant reproduction because they feed from flowers of crop plants.
(i) The first sentence in the article is not correct.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A company plans to produce genetically modified (GM) adult male mosquitoes.
The GM mosquitoes will carry a gene from bacteria. The gene causes the death of offspring before they become adults.

Male mosquitoes do not feed on blood.
Scientists are considering releasing millions of adult male GM mosquitoes into the wild.

Do you think scientists should release millions of male GM mosquitoes into the wild?

In your answer you should give advantages and disadvantages of releasing GM mosquitoes into the wild.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\longrightarrow
\qquad
(4)
(iii) Describe the process for creating a GM mosquito.
\qquad

Students investigated a food chain in a garden.

The students:

EXAM PAPERS PRACTICE

- estimated the number of lettuce plants in the garden
- estimated the number of snails feeding on the lettuces
- counted two thrushes in the garden in 5 hours.

The table below shows the students' results and calculations.

Organism	Population size	Mean mass of each organism in g	Biomass of population in g	Biomass from previous organism that is lost in g	Percentage of biomass lost
Lettuce	50	120.0	6000		
Snail	200	2.5	500	5500	91
Thrush	2	85.0	170	330	66

(a) (i) Give two ways that biomass is lost along a food chain.
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Scientists estimate that about 90% of the biomass in food is lost at each step in a food chain.

Suggest one reason why the students' value for the percentage of biomass lost between the snails and the thrushes is only 66\%.
\qquad
\qquad
\qquad
\qquad
(b) European banded snails have shells with different colours (light or dark) and with stripes or with no stripes.

Figure 1 shows two examples of European banded snails.

For more help, please our website www.exampaperspractice.co.uk

Figure 1

Figure 2 shows results from surveys in woodlands and in grasslands of the percentage of snails with light-coloured shells and the percentage of snails with no stripes.

Each point on the graph represents the results of one survey in one habitat.
Figure 2

Key

- In woodlands o in grasslands

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(i) Figure 2 is a scatter graph.

Why is a scatter graph used for this data?
\qquad
\qquad
\qquad
\qquad
(ii) Compare the general appearance of snails that live in woodlands with the general appearance of snails that live in grasslands.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Suggest a reason for the general appearance of snails that live in woodlands.
\qquad
\qquad
\qquad
\qquad

Q18.

Ragwort is a plant that often grows as a weed in grassland.
The image below shows a ragwort plant.

EXAM PAPERS PRACTICE

© Difydave/iStock
Some students estimated the number of ragwort plants growing in a field on a farm.
The students:

- placed a quadrat at 10 random positions in the field
- counted the number of ragwort plants in each quadrat.

The quadrat measured 1 metre $\times 1$ metre. The area of the field was $80000 \mathrm{~m}^{2}$.
The table below shows the students' results.

Quadrat number	Number of ragwort plants
1	1
2	0
3	3
4	0
5	0
6	0
7	5
8	0
9	0
10	2

(a) Complete the following calculation to estimate the number of ragwort plants in
the field.
Use information from the table above.
Total number of ragwort plants in 10 quadrats $=$ \qquad
Mean number of ragwort plants in $1 \mathrm{~m}^{2}=$ \qquad
Therefore estimated number of ragwort plants in field $=$
(b) What could the students do to get a more accurate estimate?

Tick ($\sqrt{ }$) one box.

Place the quadrat in 100 random positions.

Place the quadrat only in areas where they could see ragwort plants.

Place the quadrat in positions at the edge of the field.
\square
\square

(c) The farmer who owned the field kept horses.

If horses eat ragwort, the ragwort can poison them.
The farmer considered two methods of controlling ragwort in his field.
Method 1: Spraying with a selective weed killer
Method 2: Pulling out the ragwort plants by hand
In Method 1:

- the cost of the weed killer was $£ 420$
- the weed killer would not harm the grass but would kill all other plants
- the farmer could apply the weed killer from a sprayer towed by a tractor.

Method 2 could be done by local volunteers.
What are the advantages and disadvantages of using Method 2 instead of Method 1 for controlling ragwort?

Advantages of Method 2

EXAM PAPERS PRACTICE

Disadvantages of Method 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q19.

Over millions of years:

- new groups of organisms have evolved
- other groups of organisms have become extinct.
(a) If an asteroid collided with the Earth, large amounts of dust and water vapour would be thrown up into the air. This would mean less light and heat would reach the Earth's surface from the Sun.
(i) A reduced amount of light and heat could have caused the extinction of plants.

Suggest how.
\qquad
\qquad
\qquad
\qquad
(ii) How could the extinction of plants have caused the extinction of some animals?
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(iii) Give two reasons, other than collision with an asteroid, why groups of animals may become extinct.
1.
\qquad
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) The graph shows how the rate of extinction of groups of animals has varied over the past 300 million years.

(i) If more than 10 groups of animals become extinct in a 1 million year period, scientists call this a 'mass extinction'.

How many mass extinctions occurred over the past 300 million years?

EXAM PAPERS PRACTICE
(ii) How do we know what types of animals lived hundreds of millions of years ago?
\qquad
\qquad
\qquad
\qquad
(c) Use information from the graph to answer part (i) and (ii).
(i) How many years ago did the most recent mass extinction of animals occur?

Tick ($\sqrt{ }$) one box.

50 million years ago \square

65 million years ago

250 million years ago

(ii) What was the mean number of groups of animals becoming extinct per million years in the most recent mass extinction?
\qquad
(iii) Why are scientists not sure how many groups of animals became extinct in the most recent mass extinction?
\qquad
\qquad
\qquad
\qquad

Q20.

Some students wanted to estimate the number of plantain plants in a grassy field.
The field measured 100 metres $\times 50$ metres .

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

The students:

- chose areas where plantains were growing
- placed 10 quadrats in these areas
- counted the number of plantains in each of the 10 quadrats.

Each quadrat measured $25 \mathrm{~cm} \times 25 \mathrm{~cm}$.
The table below shows the students' results.

Quadrat number	Number of plantain plants
1	2
2	1
3	4
4	1
5	3
6	2
7	4
8	1
9	1
10	1

(a) Complete the following calculation to estimate the number of plantain plants in the field.

Use the students' results from the table above.
Total number of plantains in 10 quadrats $=$ \qquad
Total area of 10 quadrats $=$ \qquad m^{2}

Mean number of plantains per $\mathrm{m}^{2}=$ \qquad

Area of field $=$ \qquad m^{2}

Therefore estimated number of plantains in field $=$ \qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(b) The students' method would not give a valid estimate of the number of plantain plants in the field.

Describe three improvements you could make to the students' method.
For each improvement, give the reason why your method would produce more valid results than the students' method.

Improvement 1

Reason
\qquad

Improvement 2

Reason
\qquad

Improvement 3

Reason
\qquad
\qquad
\qquad

Q21.
Figures 1 and 2 show battery chickens and free-range chickens.

Figure 1
Battery chickens

Figure 2
Free-range chickens

EXAM PAPERS PRACTICE

Battery chickens are kept in cages indoors. Free-range chickens can walk around outside.
(a) Give one way in which food production might be more efficient from battery chickens than from free-range chickens. Give a reason for your answer.
\qquad
(b) Some farms use waste from chickens to produce biogas in an anaerobic digester.

Microorganisms in the digester break down the waste by anaerobic respiration.
(i) What does anaerobic mean?

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\square
(ii) One product of anaerobic respiration is methane.

Name two other products of anaerobic respiration.
1.
\qquad
\qquad
2.
\qquad
\qquad
(c) The best temperature for anaerobic digesters is about $35^{\circ} \mathrm{C}$.

Explain why the volume of biogas produced would be less at higher temperatures.
\qquad
\qquad
\qquad
\qquad
\qquad
$-$
\qquad -
(d) Figure 3 shows other types of waste that can be used in an anaerobic digester to produce biogas.

Figure 3

EXAM PAPERS PRACTICE

(i) What is the volume of biogas produced by a tonne of grass cuttings?
\qquad m^{3}
(ii) Biogas is 60\% methane.

Calculate the volume of methane gas produced per tonne of grass cuttings.
\qquad m^{3}
(1)
(e) Why should biogas not be allowed to escape into the atmosphere?
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad

Q22.

A grassy field on a farm measured 120 metres by 80 metres.
A student wanted to estimate the number of buttercup plants growing in the field.
The student found an area where buttercup plants were growing and placed a $1 \mathrm{~m} \times$ 1 m quadrat in one position in that area.

Figure 1 shows the buttercup plants in the quadrat.
Figure 1

The student said, 'This result shows that there are 115200 buttercup plants in the field.'
(a) (i) How did the student calculate that there were 115200 buttercup plants in the field?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\square
(ii) The student's estimate of the number of buttercup plants in the field is probably not accurate. This is because the buttercup plants are not distributed evenly.

How would you improve the student's method to give a more accurate estimate?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Sunlight is one environmental factor that might affect the distribution of the buttercup plants.
(i) Give three other environmental factors that might affect the distribution of the buttercup plants.
1.
\qquad
2.
\qquad
3.
\qquad
(ii) Explain how the amount of sunlight could affect the distribution of the buttercup plants.
(c) Figure 2 is a map showing the position of the farm and a river which flows through it.

EXAM PAPERS PRACTICE

Figure 2

Every year, the farmer puts fertiliser containing mineral ions on some of his fields. When there is a lot of rain, some of the fertiliser is washed into the river.
(i) When fertiliser goes into the river, the concentration of oxygen dissolved in the water decreases.

Explain why the concentration of oxygen decreases.
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
(ii) There is a city 4 km downstream from the farm.

Apart from fertiliser, give one other form of pollution that might go into the river as it flows through the city.
\qquad
\qquad
(d) Three sites, A, B and C, are shown in Figure 2.

Scientists took many samples of river water from these sites.
The scientists found larvae of three types of insect in the water: mayfly, stonefly and caddisfly. For each type of insect the scientists found several different species.

The scientists counted the number of different species of the larvae of each of the three types of insect.

Figure 3 shows the scientists' results.
Figure 3

(i) How many more species of mayfly were there at Site \mathbf{B} than at Site A?

For more help, please our website www.exampaperspractice.co.uk
(ii) Suggest what caused this increase in the number of species of mayfly.
\qquad
\qquad
\qquad
\qquad
(iii) The scientists stated that the number of species of stonefly was the best indicator of the amount of oxygen dissolved in the water.

Use information from Figure 3 to suggest why.

Q23.

A gardener investigates if turning over the waste in a compost heap makes the waste decay more quickly.

The gardener:

- makes two separate heaps of garden waste, heap A and heap B
- turns over the material in heap A every 2 weeks
- does not turn over the material in heap B
- estimates the amount of decay in the two heaps after 6 months.

The diagram shows the two heaps of garden waste at the beginning of the investigation.

(a) Suggest two factors, other than time, the gardener should control to make the investigation fair.
1.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
2.
\qquad
\qquad
\qquad
\qquad
(b) Name one type of living thing that causes decay.
\qquad
\qquad
(c) The gardener's results are shown in the table.

Compost heap	Estimated amount of decay
A	A lot
B	Very little

(i) Why does turning over the material in heap A make the material decay more quickly?
\qquad
\qquad
\qquad
\qquad
(ii) The gardener puts decayed material around his plants to help them grow.

Suggest why the plants in a woodland grow well each year without material from compost heaps being added.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad

Q24.

This question is about carbon.
The graph shows the mass of carbon added to and removed from the atmosphere each year.

(a) Name process \mathbf{X}.
\qquad
\qquad
(b) (i) Calculate the mass of carbon added to the atmosphere by respiration per year.

Answer = \qquad billion tonnes
(ii) Some scientists are concerned that the mass of carbon in the atmosphere is changing.

How does the data in the graph support this idea?
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(Total 3 marks)

Q25.

Some students set up biogas generators to find out which type of animal manure produced the most biogas.

The diagram shows the apparatus they used.

The students:
Step 1: Put some cow manure into the plastic bottle
Step 2: Filled the bottle with distilled water
Step 3: Attached a balloon over the top of the bottle
Step 4: Put the bottle in a warm room for 10 days
Step 5: Measured the diameter of the balloon on day 10
Step 6: Repeated steps 1 to 5 using each type of animal manure.
The students' results are shown in the table.

Type of animal manure	Diameter of balloon on day $\mathbf{1 0}$ in cm
Cow	29
Horse	26
Sheep	34
Pig	32

(a) What is the main gas found in biogas?

EXAM PAPERS PRACTICE
(b) The students concluded that sheep manure is the best type of manure to use in a biogas generator.

A teacher told the students that the design of their investigation meant that their conclusion might not be correct.

Suggest two reasons why.
1.
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(c) Another student suggested that adding potato to the manure would increase the amount of biogas produced.

Why would adding potato increase the amount of biogas produced?
Tick (\checkmark) one box.

The potato contains a lot of carbohydrate.

The potato contains a lot of protein.

The potato contains a lot of water.

Q26.
Freshwater streams may have different levels of pollution. The level of pollution affects which species of invertebrate will live in the water.

For more help, please our website www.exampaperspractice.co.uk

Table 1 shows the biomass of different invertebrate species found in two different streams, \mathbf{X} and \mathbf{Y}.

Table 1

	Biomass in g	
Invertebrate species	Stream X	Stream Y
Mayfly nymph	4	0
Caddis fly larva	30	0
Freshwater shrimp	70	5
Water louse	34	10
Bloodworm	10	45
Sludge worm	2	90
Total	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$

(a) The bar chart below shows the biomass of invertebrate species found in Stream X.
(i) Complete the bar chart by drawing the bars for water louse, bloodworm and sludge worm in Stream Y.

Use the data in Table 1.

(2)
(ii) Table 2 shows which invertebrates can live in different levels of water pollution.

Table 2

Pollution level	Invertebrate species likely to be present
Clean water	Mayfly nymph
Low pollution	Caddis fly larva, Freshwater shrimp
Medium pollution	Water louse, Bloodworm
High pollution	Sludge worm

Which stream, \mathbf{X} or \mathbf{Y}, is more polluted?
Use the information from Table 1 and Table 2 to justify your answer.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\square
(b) There is a sewage works near another stream, \mathbf{Z}.

An accident caused sewage to overflow into Stream Z.
Two weeks later scientists took samples of water and invertebrates from the stream.
They took samples at different distances downstream from where the sewage overflowed.
The scientists plotted the results shown in Graphs P and \mathbf{Q}.
Graph P: change in water quality downstream of sewage overflow

Graph Q: change in invertebrates found downstream of sewage overflow

For more help, please our website www.exampaperspractice.co.uk

(i) Describe the patterns shown in Graph \mathbf{P}.
\qquad
(ii) Describe the relationship between dissolved oxygen and the survival of mayfly nymphs in Stream Z. Suggest a reason for the pattern you have described.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow
\qquad

\qquad
\qquad
\qquad
-
(c) Many microorganisms are present in the sewage overflow.

Explain why microorganisms cause the level of oxygen in the water to decrease.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q27.
(a) The diagram shows the carbon cycle.

EXAM PAPERS PRACTICE

(i) The concentration of carbon dioxide in the atmosphere has increased over the last 100 years.

Give two human activities that might have caused this increase.
1.
\qquad
2.
\qquad
(ii) Give the letters of two arrows in the diagram which show respiration.

(iii) Give the letter of one arrow which shows decay.
\square
(b) Scientists investigated the breakdown of dead leaves.

The scientists:

- placed dried leaves in mesh bags. Half of the bags had a mesh size of 1.5 mm ; the others had a mesh size of 6 mm .

Mesh bags containing leaves

The scientists then:

- weighed the dried leaves in each bag at the start of the investigation
- placed the bags of leaves on soil: some of the bags were placed in areas where there were earthworms in the soil; the other bags were placed in areas where there were no earthworms
- left the bags for four months
- collected the bags, dried the leaves and weighed them again.

Most earthworms are between 3 mm and 6 mm in diameter.
The bar graph shows the scientists' results.

EXAM PAPERS PRACTICE

(i) The percentage of leaf litter at the start of the investigation was 100% in each bag.

What percentage of the leaf litter was broken down in the 6 mm mesh bags...
with earthworms \qquad \%
without earthworms? \qquad \%
(ii) What effect do earthworms have on the amount of leaves broken down in the 6 mm mesh bags?

Use your answer to part (b) (i) to show how you arrive at your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\square
(iii) When there were earthworms in the soil, the results for the 6 mm mesh

EXAM PAPERS PRACTICE
bags were different from the results for the 1.5 mm mesh bags.
Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Other organisms, smaller than earthworms, cause most of the breakdown of the leaves.

Explain how the results show this.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
\qquad

Q28.

Lichens can be used as air pollution indicators.
The graph below shows the number of lichen species found growing on walls and trees at increasing distances from a city centre.

(a) (i) How many species of lichen are found on walls 2 km from the city centre?
\qquad
\qquad
(ii) Describe the patterns in the data.
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(b) The table below shows the concentration of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ in the air at different distances from the same city centre.

Distance from city centre in $\mathbf{k m}$	$\mathbf{S O}_{\mathbf{2}}$ concentration in g per $\mathbf{m}^{\mathbf{3}}$
0	200
3	160
8	110
13	85
18	65

Suggest how the data in the table could explain the patterns in the graph above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Nitrogen oxides are also air pollutants.

The main source of nitrogen oxide pollution comes from road vehicles.
Different lichen species vary in their tolerance of the levels of nitrogen oxides in the air.

Some lichens can only grow in very clean air where there are low levels of nitrogen oxides. They are nitrogen-sensitive.

Some lichens grow very well in high levels of nitrogen oxides. They are nitrogen-loving.

The table below shows one lichen species which is nitrogen-sensitive and one

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
lichen species which is nitrogen-loving.

Nitrogen-sensitive	Nitrogen-loving
Usnea	Xanthoria

Usnea © epantha/iStock/Thinkstock;
Xanthoria By Zakwitnij!pl Ejdzej + Iric (CC BY-SA.2.0) via wikicommons
(i) Describe how you would investigate the distribution of the two lichens at different distances into a wood from a main road.
\qquad
(ii) Predict the results from the experiment you described in your answer to part (c)(i). Explain why you made this prediction.
\qquad
\qquad
\qquad
\qquad
\qquad

EXAM PAPERS PRACTICE
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(3)
(Total 12 marks)

Q29.

A project called Garden Bird Watch counts the UK populations of common birds. 16 000 people count the number of birds in their gardens every week of the year.

The results are analysed by researchers and written up in important scientific magazines.
(a) Suggest one advantage of this method of collecting data.
\qquad
\qquad
\qquad
\qquad
The table below shows the percentage (\%) of gardens visited by different bird species in 1995 and in 2011.

Bird species	\% of gardens visited in $\mathbf{1 9 9 5}$	\% of gardens visited in $\mathbf{2 0 1 1}$
Goldfinch	12	58
Greenfinch	71	54
House sparrow	84	64
Starling	71	42

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Woodpigeon	48	80

(b) (i) Complete the bar chart below, by plotting the data from the table above for 2011.

Some have been done for you.

Bird species
(ii) In this survey, the results from 16000 gardens were sent in.

How many gardens were visited by woodpigeons in 2011?
\qquad
\qquad
(iii) Which bird species has increased the most from 1995 to 2011?
\qquad
\qquad
(c) The change in the number of woodpigeons may be partly because they have

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
spread to towns and cities.
Suggest why this increase in woodpigeons in towns and cities might have occurred.
\qquad
\qquad
\qquad

Q30.
Most birds sit on their eggs to keep them warm until they hatch.
Megapode birds:

- dig a large hole in sand
- fill the hole with dead plants
- lay their eggs on top of the dead plants
- cover the surface with a thick layer of sand.

The image below shows a megapode bird's nest.

(a) The dead plants in the nest decay. The decaying process helps to keep the eggs warm for many weeks.

Suggest how.
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Megapode birds open and close the air vents of the nest at different times of the day.

Suggest reasons why it is necessary to open and close the air vents.
\qquad
(ii) The sex of a megapode bird that hatches from an egg depends on the temperature at which the egg was kept.

Use this information to suggest why it is important for megapode birds to control the temperature of their nests.
\qquad
\qquad
\qquad
\qquad

Q31.
Some students investigated the distribution of dandelion plants in a grassy field. The

EXAM PAPERS PRACTICE
grassy field was between two areas of woodland.
Figure 1 shows two students recording how many dandelion plants there are in a 1 metre x 1 metre quadrat.

Figure 1

Figure 2 shows a section across the area studied and Figure $\mathbf{3}$ shows a bar chart of the students' results.

Figure 2

Distance in m
Figure 3

Distance in m

EXAM PAPERS PRACTICE
(a) How did the students use the quadrat and the 30-metre tape measure to get the results in Figure 3?

Use information from Figure 1.
\qquad
(b) (i) Suggest one reason why the students found no dandelion plants under the trees.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest one reason why the students found no dandelion plants at 16 metres.
\qquad
\qquad
\qquad
\qquad
(c) The teacher suggested that it was not possible to make a valid conclusion from these results.

Describe how the students could improve the investigation so that they could make a valid conclusion.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q32.

At the seashore, the tide comes in and goes out twice each day.
Some students investigated whether two different species of seaweed could live only at certain positions on a rocky shore.
Seaweeds are plant-like organisms that make their food by photosynthesis.
Figure 1 shows the two species of seaweed that the students investigated.
Figure 1

(a) The students:

1 placed a 50-metre tape measure on the rocks at right angles to the sea
2 placed a quadrat next to the tape measure
3 recorded whether each species was present or not.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

The students repeated steps 2 and 3 every metre down the shore.
Figure 2 shows a section of the seashore and the students' results.
Figure 2
Section of the seashore

Students' results

(i) The students placed the quadrat at regular intervals along a transect line rather than placing the quadrat at random positions anywhere on the rocky shore.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) How could the students have improved their investigation to ensure that they produced valid data?

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Figure 2 is repeated here to help you answer this question.

Figure 2

Section of the seashore

Students' results

The students concluded that bladder wrack is better adapted than sea lettuce to survive in dry conditions.

What is the evidence for this conclusion?
Use information from Figure 2.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad

(b) The bladder wrack has many air bladders.

The air bladders help the bladder wrack to float upwards when the sea covers it.

Suggest how this helps the bladder wrack to survive.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q33.

The image below shows a model biogas generator.

Students used the model biogas generator to investigate which type of food waste produces the greatest yield of biogas.

Gas collects in the balloon. The gas is then released through the valve and is burned at the Bunsen burner.

The students:

- put 500 g of potato peelings in the plastic bottle with some water and sealed the apparatus
- released the gas from the balloon after day two and timed how long the gas burned for
- released the gas that had collected in the balloon from day two to day four and timed how long the gas burned for
- repeated the investigation using 500 g of cooked rice, then 500 g of cabbage leaves and then 500 g of cooked pasta.
(a) Table 1 shows the students' results.

Table 1

Type of food waste	Length of time the gas burned in seconds	
	After day two	From day two to day four

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Potato peelings	0	175
Cooked rice	0	100
Cabbage leaves	0	150
Cooked pasta	0	160

(i) Suggest why the gas collected in the balloon and released after day two did not burn.
\qquad
(ii) Suggest why potato peelings produced the most biogas.
\qquad
\qquad
\qquad
\qquad
(b) Scientists investigated the production of biogas from different types of animal manure.

Table 2 shows the scientists' results.
Table 2

Type of mannure	Volume of biogas produced in m 3 per kg of manure	Methane in the biogas as \% of total volume
Cow	0.34	65

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Pig	0.58	68
Hen	0.62	60
Horse	0.30	66
Sheep	0.61	67

(i) Calculate the volume of methane produced from 1 kg of cow manure.
\qquad
\qquad
\qquad
\qquad
Volume of methane $=\ldots \mathrm{m}^{3}$
(ii) One scientist concluded that it would be better to use sheep manure in a biogas generator than to use cow manure.

What is the evidence for this conclusion?
Use information from Table 2 in your answer.
\qquad

Peas grow in pods on pea plants.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

A gardener grew four varieties of pea plants, A, B , C and \mathbf{D}, in his garden. The gardener counted the number of peas in each pod growing on each plant.

The table shows his results.

Variety	Range of number of peas in each pod	Mean number of peas in each pod
A	$2-6$	4
B	$3-7$	5
C	$3-8$	6
D	$6-8$	7

(a) Give one environmental factor and one other factor that might affect the number of peas in a pod.

Environmental factor

Other factor
(b) The gardener thinks that he will get the largest mass of peas from his garden if he grows variety \mathbf{D}.

Why is the gardener not correct?
Suggest one reason.
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(c) It is important that carbon is cycled through living things.

After he has picked the peas, the gardener puts the dead pea plants onto a compost heap.

Over the next few months, the carbon in the carbon compounds from the pea plants is returned to the air.

Describe how.
\qquad

Q35.
On a rocky shore, when the tide goes in and out, organisms are exposed to the air for different amounts of time.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
(a) On hot, windy days when the tide is out the concentration of the salt solution in rock pools may become very high.

What term is used to describe organisms that can survive in severe conditions such as very high concentrations of salt solution?
\qquad
\qquad
(b) Periwinkles are types of snail.

Students surveyed the different types of periwinkle living on a rocky shore.
The diagram shows the results of the students' survey.
The highest position that the sea water reaches on the shore is called the high tide level.
Each bar represents the range of habitats for each type of periwinkle.

Position on shore	Small periwinkle	Rough periwinkle	Common periwinkle	Flat periwinkle
High tide level \downarrow Low tide level	工	工		

(i) Which two types of periwinkle are likely to compete with each other to the greatest extent?
\qquad
\qquad
(ii) Explain your answer to part (b)(i).
\qquad
\qquad
\qquad
\square
(iii) The small periwinkle can survive much nearer to the high tide level than the flat periwinkle.

Suggest two reasons why the flat periwinkle cannot survive near to the
high tide level.
1.
\qquad
\qquad
\qquad
\square
\qquad
2.
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

(a) diffusion
(b) A
(c) B
(d) (earthworm) can absorb more oxygen (in a given time) or increases / more gas exchange allow get / obtain / take in more oxygen ignore easier absorption of oxygen ignore references to food
(e) lipase
(f) more oxygen (in soil with earthworms)
allow earthworms bring oxygen to soil
(for) more (aerobic) respiration
do not accept anaerobic respiration
(of) bacteria / fungi / microorganisms / microbes / decomposers
reference to more is only needed once for the first two marking points
(g) fertilisation
ignore sexual reproduction
(h) asexual (reproduction)
allow cloning

Q2.
(a) description of a method to achieve random placement examples could include random number generator or random coordinates allow throw over the shoulder or with eyes shut ignore throw unqualified
(b) any one from:

- random (location)
allow by chance
- avoid bias
- obtain valid / representative results
allow more accurate / precise mean ignore fair test / accurate / precise unqualified
(c) as a control / comparison
allow see the difference
or
B varies from A in only one factor
do not accept a control variable
(to) show results (in A) are due to weed killer
allow to see the effect of the weed killer allow so the results are valid
(d) 11
allow eleven
(e) $\frac{10-2}{10} \times 100$

80
an answer of 80 scores 2 marks
(f) use more quadrats
allow use larger quadrats
allow repeat
original may not be representative or reference to weeds being distributed unevenly
allow mean is more reliable / accurate / precise ignore more valid
or
leave for more than two weeks (1)
original may not be representative (1)
allow mean is more reliable / accurate / precise allow weed killer may take longer than two weeks to work (fully)
ignore more valid

Q3.
(a)

	$1960-1977$	$1977-2003$	2003-2015
trend in carbon dioxide concentration		increasing	increasing
trend in air temperature	decreasing	increasing	constant/ decreasing

allow synonyms e.g. level / goes up / goes down
(b) traps heat / energy or (long-wavelength / IR) radiation
do not accept light / UV
or
less loss of heat
allow stops (some) heat escaping do not accept stops all heat escaping
or
insulates
ignore greenhouse effect
ignore reference to ozone layer
(c) Level 2: Some logically linked reasons are given. There may also be a simple judgement.

Level 1: Relevant points are made. They are not logically linked.

No relevant content

Indicative content

for the theory:

- (overall increased CO_{2} parallels) overall increased temperature
(e.g. by $0.4\left({ }^{\circ} \mathrm{C}\right)$)
- $\quad \mathrm{CO}_{2}$ traps (long-wave) radiation / IR / heat

against the theory:

- in some years (e.g. 1960-1977) temperature falls (while CO_{2} is rising)
- many (large and small) erratic rises and falls in temperature
- overall correlation does not necessarily mean a causal link
- other (unknown) factors may be involved in temperature change
to access level 2 there must be evidence both for and against the theory and use of data from the graph
(d) burning of (fossil) fuels
allow e.g. coal / oil / gas
allow driving cars
allow any activity which leads to burning fuels e.g. using central heating ignore power stations unqualified ignore burning / fires unqualified ignore deforestation
(e) photosynthesis
allow full description or full equation allow a symbol equation which is not balanced
(f) any two from:
- (some) plants grow faster / higher yield
- loss of habitat
- migration or change in distribution*
- extinction*
*if neither is given allow alters biodiversity for 1 mark
allow (in terms of extinction) death due to e.g. lack of water / food or increased disease ignore death unqualified
allow points made using examples

Q4.
(a) there is an uneven distribution of dandelions
or
(more) representative / valid
or
avoid bias
or
more accurate / precise mean ignore accurate / precise unqualified ignore repeatability / reproducibility / reliability / fair test
(b) (correct mean per $\mathrm{m}^{2}=$) 6 or 6.0
(correct field area =) $55000\left(\mathrm{~m}^{2}\right)$
mean \times area - e.g. 6(.0) $\times 55000$
allow incorrect calculated values for mean and / or field area

EXAM PAPERS PRACTICE

330000

allow correct calculation from previous calculation

3.3×10^{5}
allow calculated value in standard form
an answer of 3.3×10^{5} scores 5 marks
an answer of 330000 scores 4 marks
(c) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- placing of quadrat
- large number of quadrats used
- how randomness achieved - e.g. table of random numbers or random number button on calculator or along transect
- quadrats placed at coordinates or regular intervals along transect
- in each of two areas of different light intensities or transect running through areas of different light intensity
- for each quadrat count number of dandelions
- for each quadrat measure light intensity
- compare data from different light intensity
to access level 3 the key ideas of using a large number of quadrats randomly, or along a transect, and counting the number of dandelions in areas of differing light intensity need to be given to produce a valid outcome
(d) any two from:
- temperature
allow heat
- water
allow moisture / rain
- (soil) pH
allow acidity
- minerals / ions
allow e.g. magnesium ions or nitrate
allow salts / nutrients
- winds
- herbivores
allow trampling ignore carbon dioxide ignore space ignore competition unqualified do not accept oxygen

Q5.
(a) x-axis: scale + labelled, including units
scale $\geq 1 / 2$ width of graph paper label: biomass in g / m^{2}
(b) $\frac{840-10}{840} \times 100$
allow equivalent calculation

99
allow answer given to two significant figures from an incorrect calculation in step 2
an answer of 99 scores $\mathbf{3}$ marks
(c) inedible parts / example
allow eaten by other animals or not all organisms eaten
or
egested / faeces
allow not digested allow excretion / urine ignore waste
or
respiration / as CO_{2}
ignore energy losses
ignore movement
(by) digestion
allow example such as starch broken down to sugar
or
protein broken down to amino acids
(and) bacteria respire aerobically
or
respire using oxygen
(which) lowers oxygen concentration (in water)
or
fish have less oxygen
allow reduced respiration of fish
(so) reduced energy supply causes death of fish
allow toxins in the sewage kill fish
ignore pathogens or (pathogenic) bacteria cause disease in fish and kills them

Q6.
(a) 3.7
(b) 2
(c) (different combinations of alleles cause) many / 22 values allow continuous variation
or
in-between values
or
large range of values

or

there are not only two values
allow there are not only 3 values if 3 is given in part (b)
(d) different protein made
allow change in shape (of enzyme) or change in 3-D structure ignore denature
active site changed
so substrate does not fit / bind
allow description of substrate allow cannot form E-S complex ignore lock and key description
(e) produces (some) offspring with high-fat milk or
not all offspring have low-fat milk
ignore reference to alleles
(f) takes less time (to obtain results)
or
more offspring at the same time
allow other sensible suggestion - e.g. allows screening or allow cow 7 to continue to produce eggs or avoid injury to cow 7 during mating or giving birth
(g) male gametes correct: d (and d)
female gametes correct: D and d
allow 1 mark if gametes are correct but gender not identified
correct derivation of offspring genotypes from given gametes allow 2×2 or 2×1 derivation

Dd identified as low-fat and dd identified as high-fat in offspring if DD offspring are produced, must also identify as low-fat
(h) find female with low(est) fat in milk and high(est) milk yield
allow choose from 7, 9, 12, 13 which has the
highest yield
find male whose female offspring have high(est) milk yield and low(est) fat in milk
allow choose from 16 or 18 whose female offspring has the highest yield
or
find female with lowest fat in milk
or cow 13 (1)*
*or
allow female with high(est) milk yield
find male whose female offspring have high(est) milk yield (1)*
*or
allow male whose female offspring have lowest fat in milk / male 16
cross the best (for both features) female with the best male
select best offspring (for both features) from each generation and repeat for several generations

Q7.
(a) to kill microorganisms on / in the flask
or
so only microorganisms in the milk caused the results
allow bacteria / fungi / microbes
do not accept viruses
ignore germs
(b) heating
to over $100^{\circ} \mathrm{C}$
allow place in oven / pressure cooker
do not accept disinfectant
allow other suitable method - e.g. use of UV
(c) to prevent microorganisms entering from the air allow bacteria / fungi / microbes for microorganisms do not accept viruses ignore germs
(d)

0	olive-green	7
1	olive-green	7
2	olive-green	7
3	orange-green	6

all correct for 1 mark
(e) (pH meter) - more accurate / more precise
allow more exact
allow can measure to 0.1 pH unit
or to smaller intervals of pH
(leaving... 6 days) - obtain greater pH change or
because there was (very) little change in 3 days
allow more acid will be made
(f) scale $>\frac{1}{2}$ of x-axis
and
x-axis labelled (time in) days
points plotted correctly
all 7 correct = 2 marks
5 or 6 correct = 1 mark
line of best fit = smooth curve through points
do not accept ruled point-to-point
(g) ($1^{\text {st }}$ day) too few bacteria
(after day 1 more bacteria so more) acid made
(days 5-6) sugar / food used up
or
low pH denatures enzymes
or
low pH kills bacteria
allow enzymes do not work
do not accept enzymes killed
(h) (similarity) - same start $\mathrm{pH} /$
pH 7 and end $\mathrm{pH} / \mathrm{pH} 4.5$
or
same pH change $/$ change $=2.5$
(difference) - faster

Q8.
(a) any two from:

- sprinkled through air
- air spaces between stones
- thin layer over stones (for efficient diffusion)
- slow flow (for efficient diffusion)
(b) green algae
(c) (large / small) protist
(d) Level 2 (3-4 marks):

Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.

Level 1 (1-2 marks):
Facts, events or processes are identified and simply stated but their relevance is not clear.

No relevant content (0 marks)

Indicative content

digestion:

- (external) enzymes released
- role of enzymes - e.g. amylase / protease / lipase
- substrates \& products - e.g. starch \rightarrow sugar / protein \rightarrow amino acids / fat \rightarrow fatty acids

absorption:

- by diffusion / active transport

deamination:

- amino acids \rightarrow ammonia / ammonium ions
release of other ions:
- e.g. phosphate / nitrate / magnesium
respiration:
- produces carbon dioxide (+ water)
or
equation is given
- release of energy allows other processes to take place e.g. active transport

Q9.
(a) large number - more representative and so more valid (mean can be calculated) allow more reliable
random - avoid bias
(b) correct figures in table:
(3)
(8)
(16)

19
9
4
1
(c) all bars plotted correctly
$\pm 1 \mathrm{~mm}$
allow ecf from the table
(d) any three from:

- much overlap of values between the 2 shores

sheltered shore:

accept converse for exposed shore

- wider range or use of figures - e.g. approx 0.26 to 0.70 cf 0.21 to 0.55
- \quad higher mode or use of figures - e.g. 0.41 to 0.45 cf 0.36 to 0.40
allow ecf for figures from (b)
- there are no limpets at 0.21 to 0.25
allow there are no limpets on exposed shore at 0.56 to 0.70
(e) sheltered -0.47 or 0.466
exposed -0.35 or 0.354
(f) radius $=2.48 \mathrm{~cm}$
an answer of 38.6 / 38.62 / 38.64 scores 3 marks
$\left(\right.$ area $\left.=3.14 \times(2.48)^{2}=\right) 19.3 \mathrm{~cm}^{2}$
allow area calculated from incorrect radius
(force $=19.3 \times 2=$) 38.6 (newtons)
or
$\left(\right.$ force $\left.=\left[3.14 \times(2.48)^{2}\right] \times 2\right)$
$=38.62$ (newtons)
or
$\left(\right.$ force $=\left[\pi \times(2.48)^{2}\right] \times 2$)
$=38.64$ (newtons)
allow force calculated from 1 previous error
(g) any two from:
- foot may not be circular
- foot may be larger / smaller than outside of shell
- scientists' value is approximate
- variation between limpets / described
e.g. re muscle development or greater 'awareness' of some limpets
- variation in rock surface texture
(h) any three from:
- more force of waves to dislodge limpets
- lower height lowers exposure to waves
- wider foot gives greater grip
- those with this / these feature(s) pass on alleles / genes to offspring leading to population of broad squat limpets
allow converse for sheltered shore throughout, if clearly stated

Q10.

(a) snail
or
shrew
additional incorrect answer negates correct answer
(b) shrew
additional incorrect answer negates correct answer
(c) fewer shrews to eat them
(d) population
(e) \mathbf{C}
(f) $(11000 \times 0.1=)$ 1100 (kJ)
(g) the snails do not eat the roots of the lettuces
(h) any one from:

- light (intensity)
- temperature
- moisture (levels)
- soil pH
- mineral / ion content (of soil)
- wind intensity / speed
ignore wind direction
- carbon dioxide (levels)
- oxygen (levels)

Q11.
(a) measure the length / area of the field
(b) use (a) random number(s) (generator)
or
use coordinates method explained
(c) compare their results with another student's results
place more quadrats
1
(d) $0.25 \times 5=1.25$
$500 / 1.25=400$
$(40 \times 400=) 16000$
allow 16000 with no working shown for 3 marks
(e) 11
(f) (quadrat) 5
both quadrat number and correct reason must be given for 1 mark
very few or only 2 growing (here)

Q12.

(a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore) $49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to 25:1 (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):
A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.

0 marks:

No relevant content.

Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose
use of carbon in growth:
- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

EXAM PAPERS PRACTICE
Q13.
(a) wear a face mask
allow wear gloves
(b) Level 2 (3-4 marks):

A detailed and coherent plan covering all the major steps. It sets out the steps needed in
a logical manner that could be followed by another person to produce an outcome which
will address the hypothesis.

Level 1 (1-2 marks):

Simple statements relating to steps are made but they may not be in a logical order. The plan may not allow another person to produce an outcome which will address the hypothesis.

0 marks:

No relevant content.

Indicative content

Plan:

- cut a specified number of pieces of bread to the same size
- place mould spores on the bread
- the number of mould spores needs to be the same quantity of mould spores on
each piece of bread
- place bread in different sealable plastic bags
- place in different temperatures (minimum of three) eg fridge, room, incubator
- leave each for the same amount of time eg four days
- measure the percentage cover of mould on each piece of bread
- repeat experiment

additional examiner guidance:

- good level 2 answer will describe how the growth of mould can be measured and
will give a range of different temperatures to be used
- allow equivalent levels of credit for alternative methodologies that would clearly produce a measurable outcome in terms of mould growth at various temperatures
(c) any one from:
- type of mould
- amount of mould (put on each piece of bread)
- amount of air in the plastic bags
- size of the pieces of bread
- type of bread
- amount of moisture / water added
(d) $(56-4=52) / 5$
allow 10.4 with no working shown for 2 marks ecf for incorrectly read figures for 1 mark
(e) (decomposition occurs at a faster rate when the temperature is higher or
amount of decomposition is higher when temperature is higher

Q14.
(a) any two from:

- idea of absorption of light / energy
- transfer to chemical energy
allow produce sugars / glucose / starch / carbohydrate / food / biomass
- provides food / energy for animals / caterpillar
- releases oxygen
(b)

(c) $15(\%)$
allow 1 mark for $\frac{3 \times 100}{20}$ with no answer or incorrect answer
or
allow 1 mark for 0.15
(d) (i) any two from:
- markings look like eyes / face / mouth of much larger animal
- looks fierce / scary / dangerous
allow it looks like a snake
- to frighten blue tit / bird
max 1 if reference to camouflage
(ii) any two from:
- sharp / long / big claws
ignore strong
- sharp / hooked beak
ignore strong / big
- large wings or flies quickly
allow streamlined / aerodynamic
ignore powerful wings
- good eyesight

Q15.

(a) any one from:

- continuous readings
- do not need to be there
allow automatic readings
- (more likely to be) accurate
allow greater resolution
do not allow valid
- reduces human error
allow easier to read
(b) (i) microorganisms
allow microbes / bacteria / fungi / decomposers for microorganisms, throughout
(microorganisms) respire
respiration / decay / microorganisms releases carbon dioxide ignore carbon released
(ii) all grass decomposed / decayed / rotted allow idea that all microorganisms dead (due to accumulation of waste or lack of oxygen) allow lack of / no oxygen (for respiration of microorganisms)

Q16.
(a) $0.67(\%)$
allow $0 . \dot{6}$ or 0.7
allow 1 mark for evidence of $\left(2 \times 10^{6}\right) \div\left(3 \times 10^{8}\right)$
or
allow 1 mark for 0.0067 or 0.6
(b) (i) idea that food chains start with plants / producers allow food chains do not start with animals or larvae are consumers
idea that these make food (for other organisms in the chain) allow idea that plants / producers photosynthesise or plants / producers get energy from the sun
allow mosquito larvae do not make food / photosynthesise or mosquito larvae do not get energy from the sun
(ii) any four from:

- reasoned argument for or against release must refer to at least one advantage and one disadvantage. max 3 marks for either only advantages or only disadvantages
advantages:
- fewer mosquitos biting or spreading malaria
- fewer people get / die from malaria allow people won't get / die from malaria
- lower medical costs (for those infected or for treatment) or less healthcare needed
- better economically for developing / tropical countries.
disadvantages:
- fewer crops reproduce
allow fewer crops pollinated
- poorer crop yield
- possible starvation (of people)
- high cost of GM production / mosquito release
- less food for bats / birds or bats / birds die allow disruption to food chain / ecosystem or reduction of biodiversity
- gene could 'escape' into other wildlife / species ignore into plants
(iii) any three from:
- gene from bacteria cut out
allow allele for gene
- ref to enzymes (anywhere in process)
allow at any point in process, ie in cutting or in splicing
- (gene) transferred to chromosome of mosquito allow DNA for chromosome
- at an early stage of development
allow egg / embryo

Q17.
(a) (i) any two from:

- not all eaten
allow eaten by other animals
- used for respiration
ignore used / lost in heat / movement
- lost as CO_{2} / water / urea
- lost as faeces or not all digested
if neither mark awarded allow 1 mark for lost as waste
ignore references to energy losses
do not allow for growth / repair / reproduction
(ii) any one from:
- thrushes eat other things
- thrush numbers likely to vary (considerably)
allow it is only an estimate (of population size) or only counted thrushes for 5 hours
- thrushes were not present all the time
- thrushes feed on a much bigger area
(b) (i) any one from:
- there are two dependent variables
- there is no independent variable
- to show the association / correlation / pattern (between the two variables)
(ii) (snails in woodlands) more have dark(er) colour(ed shells) or fewer have light-coloured shells allow converse for grassland, if clear
(shells have) no / fewer stripes or have no stripes
allow converse for grassland, if clear
(iii) less likely to be seen (by predators / birds / thrushes) allow camouflaged (from predators / birds / thrushes)
allow light coloured shells with stripes would be more visible (to predators / birds / thrushes in woodland (than grassland)).

Q18.
(a) 88000
correct answer = 2 marks
allow 1 mark for 1.1 (in $1 \mathrm{~m}^{2}$)
or
allow 1 mark for answer = [candidate's value in $1 \mathrm{~m}^{2}$] $\times 80$ 000
(b) Place the quadrat in 100 random positions.
(c) any three from:
must include at least one advantage and one disadvantage for full marks

Advantages:

- less cost / free
- less likely to kill other (harmless species of) plants
- weedkiller may be toxic or may cause water pollution
- weedkiller may accumulate up food chains allow uneven distribution of ragwort so much wastage of weedkiller

Disadvantages:

- volunteers may mistake other species for ragwort
- volunteers may miss plants
allow weeds will grow back
- some ragwort left to poison horses
- time consuming
- difficulties getting enough volunteers
if no other disadvantages; allow ref. to issues with volunteers
- eg don't turn up / not careful / don't finish the job

Q19.
(a) (i) reduced photosynthesis
ignore growth
do not allow need light for respiration
(ii) less food (for animals) or less oxygen (for animals)
allow loss of habitat
(iii) any two from:
accept 2 physical factors or 2 biological factors or one of each for full marks
examples of physical factors, eg

- flooding
- drought
- ice age / temperature change
ignore pollution
- volcanic activity
examples of biological factors, eg
- (new) predators (allow hunters / poachers)
- (new) disease / named pathogen
- competition for food
- competition for mates
- cyclical nature of speciation
- isolation
- lack of habitat or habitat change

If no other answers given allow natural disaster / climate change / weather change / catastrophic event / environmental change for 1 mark
(b) (i) 3
(ii) fossils
ignore bones, remains, fossil fuels
(c) (i) 65 million years ago
(ii) 17 allow ect
(iii) fossil record incomplete
or
some fossils destroyed accept not enough evidence or cannot perform experiment to test

Q20.
(a) 160000
if incorrect answer / no answer: allow max. 2 for method:
1 mark for mean $=$ total number \div area of ten quadrats eg $\frac{20}{0.625}$ or $\frac{20 \times 8}{5}$ or $\frac{160}{5}$ or 32
1 mark for final answer $=$ mean \times field area eg mean $\times 5000$
(b) Improvement: place quadrats randomly
and
Reason: avoid bias / (more) representative / (more) reliable allow 1 mark if 2 correct improvements but no reasons / only incorrect reasons

Improvement: more quadrats
and
Reason: overcome random variation / (more) typical / (more) representative / (more) reliable / repeatable

Improvement: larger quadrats or repeat when plants are bigger
and
Reason: less likely to miss plants
ignore accurate, valid, precise and fair ignore anomalies
(a) limiting their movement
or
controlling the temperature of their surroundings
reason:
reduces energy transfer
if no other marks awarded, allow 1 mark for: 'fit more chickens in same space'
(b) (i) without oxygen
ignore 'without air'
(ii) any two from:

- ethanol
allow alcohol
- carbon dioxide
- lactic acid.
do not accept energy / ATP (apply list rule)
(c) enzymes are denatured / change shape
ignore microbes are killed
(enzyme) shape is vital for function or won't work (as efficiently)
(d) (i) 200
(ii) 120
allow ecf from (d)(i)
e.g.

60 x
100 (i)
(e) causes global warming
one predicted consequence of global warming
eg rising sea levels, climate change, change in migration patterns, change in distribution of species
or
methane is flammable
so might cause fire / damage
if no other marks awarded, allow methane is a greenhouse gas for 1 mark

Q22.
(a) (i) counts / 12
$\times 120 \times 80 / \times 9600$
or
x area of field
(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- $\quad \mathrm{pH}$ (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- \quad wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(aerobic) respiration (by microbes) uses O_{2}
do not allow anaerobic
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as $\mathrm{Pb} / \mathrm{Zn}$ / Cr / oil / SO_{2} / acid rain / pesticides / litter ignore chemicals unqualified ignore waste unqualified ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen
allow fewer species in more polluted water ignore none are found at site C

Q23.
(a) any two from:

- amount of waste on each heap
allow size of heap
- (type of) materials on each heap
if neither marking points one or two awarded, allow 1 mark for same waste
- put heaps in same (environmental) conditions.
e.g. keep at same (outside) temperature
allow put in same place
(b) microorganisms / microbes / bacteria / fungi / decomposers
ignore detritivores / examples (such as worms, maggots, insects)
ignore pathogens / germs
do not allow viruses
(c) (i) oxygen / air added (when turning over)
allow idea that decay will be aerobic
allow bacteria / microorganisms need oxygen / air
allow (microorganisms) respire faster
(ii) any two from:
- dead leaves / fruit / plants (fall off / onto the ground)
- (fallen dead leaves / fruit / plants) decay
- minerals / ions / nutrients are recycled / released.
ignore references to carbon dioxide
allow animal waste or dead animals

Q24.
(a) photosynthesis
(b) (i) 140
(ii) (10 billion tonnes) more added (to atmosphere) than removed allow ecf from part (b)(i)

Q25.
(a) methane / CH_{4}
allow CH_{4}
do not allow CH^{4} or ch4 or CH 4
(b) any two from:

- didn't carry out repeats
- only tested four types of manure
- don't know the mass of manure was the same each time
- inaccuracies in measuring (diameter of) balloon
- bottles might have been different sizes
- temperature of the room may have been different.
(c) The potato contains a lot of carbohydrate

Q26.
(a) (i) correct bar heights
three correct 2 marks
two correct 1 mark
one or none correct 0 marks
ignore width
(ii) (Stream Y)
has many sludge worms / bloodworms
or
has no mayflies / caddis or few shrimp
allow 1 mark if invertebrate not named but correct association given
which indicate medium or high pollution
(b) (i) suspended solids increase (as a result of sewage overflow)
then decrease downstream / return to original levels
oxygen levels decrease (after sewage overflow)
and then rise again
(ii) any three from:

- mayflies decrease (to zero) near overflow accept 'have died out?
- because oxygen is low or mayflies have high oxygen demand
- mayflies repopulate / increase as oxygen increases again
- can't be sure if dissolved oxygen or suspended solids is the cause
(c) they respire / respiration
aerobic respiration gains 2 marks
this requires / uses up the oxygen

Q27.
(a) (i) any two from:

- burning (fossil) fuels / one named example
allow combustion / driving cars
accept breathing
- deforestation / described
do not allow power stations unqualified
- destruction of peat bogs
(ii) any two from:
$\mathrm{B}, \mathrm{C}, \mathrm{D}$
in any order
(iii) B
(b) (i) with worms: 90
without worms: 78
(ii) increase
(iii) 6 mm mesh is large enough to let (more / bigger) worms in allow converse for 1.5 mm mesh
worms entering increased breakdown
or ate more leaves
(iv) breakdown occurs with 1.5 mm mesh (which is smaller than worms)
breakdown with no worms $\approx 70 \% / \approx 30 \%$ remaining allow a lot / most breakdown without worms accept approximate figures

Q28.
(a) (i) 10
(ii) any three from:

- both increase with distance
- more spp on walls than on trees
- no lichen spp on trees for first 1 km from city
- more steady / less erratic increase on trees than walls (or converse)
- rate of increase increases with distance
(b) SO_{2} decreases with distance from centre
accept converse
Ignore pollution
high SO_{2} reduces survival or kills lichen accept converse
(c) (i) any three from:
- (line) transect
- quadrat / reference to specific area
- count number of lichens or coverage on trees
- at regular intervals / set distances
(ii) (more) Xanthoria nearest road allow 'nitrogen-loving' for Xanthoria
(more) Usnea further from the road allow 'nitrogen-sensitive' for Usnea
because most nitrogen oxide from vehicles (near road)
or
because nitrogen oxide levels will be falling / less further away (from road)
accept converse

Q29.

(a) any one from:

- get lots of data
accept more reliable / reproducible
do not accept more accurate
- cheap / free
- unlikely to be biased
- can cover a wide area at the same time / takes less time
- see seasonal variations
(b) (i) correct bar heights

1 mark for each correct bar ignore width of bars
(ii) 12800
(16000 / 100) x80 on its own for 1 mark
(iii) goldfinch
(c) any one from:

- more food available
accept fewer predators
- people feed them
accept less habitat / food in countryside
- more rubbish / waste to eat

Q30.
(a) microorganisms
allow microbes / bacteria / fungi / decomposers
(microorganisms) respire
do not allow dead plants respire
(respiration / decay / microorganisms) releases (thermal) energy / 'heat' ignore produce 'heat'
do not allow produce energy
do not allow dead plants release 'heat'
(b) (i) any three from:

- (opening) allows oxygen in
- microorganisms / eggs need oxygen
allow air for oxygen
- oxygen needed for respiration
- (opening) allows release of carbon dioxide (from microorganisms / respiration / eggs)
allow gaseous exchange (1 mark) of / for microorganisms /
eggs (1 mark) if none of first four points given
- (opening) allows energy / 'heat' to escape
- (closing) retains energy / 'heat' if too cool / at night
if no mark awarded for either of these points allow 1 mark for vents open in the day to prevent overheating and close at night to prevent it getting too cold
- (closing) retains moisture
allow (opening) releases moisture
(ii) any one from:
- maintains sex balance
e.g. equal / best / correct numbers of male and female
- (survival of species depends on there being) males and females in population
allow so the offspring are not all the same sex

Q31.
(a) any three from:

- place 30-m tape measure across field / from one wood to the other
- place quadrat(s) next to the tape
- count / record the number / amount of dandelions / plants in the quadrat ignore 'record the results'
ignore measures / estimates dandelions
- repeat every 2 metres
allow every metre / at regular intervals
(b) (i) low light / it is shady
allow no light
ignore sun / rays

or

not enough water / ions / nutrients
accept correct named ion
ignore no water / ions / nutrients
or wrong pH of soil
accept competition with trees for light / water / ions ignore competition for space and competition unqualified accept soil too acidic / too alkaline ignore temperature
(ii) sensible suggestion for a small area, eg chance variation / anomaly / poisoned by animal waste / wrong pH of soil / eaten (by animals) / cut down / footpath
(c) repeat (transect) / compare with the results of other groups allow 'do it in two different locations' for 2 marks
at different / random location(s) / elsewhere (across the field)
do not allow 'in other fields'

Q32.
(a) (i) to get data re position of seaweed / of organism
in relation to distance from sea / distance down shore / how long each seaweed was exposed
(ii) repeat several times
minimum $=2$ repeats
elsewhere along the shore
(iii) bladder wrack is further up the shore (than the sea lettuce) / exposed for longer ignore found in dry areas / on bare rock
sea lettuce (only) in rock pools / in the sea / (only) in water
(b) gets more light / closer to light
allow better access to CO_{2}
(so) more photosynthesis
allow 1 mark for light for photosynthesis
allow 1 mark for CO_{2} for photosynthesis
ignore reference to oxygen for respiration
'more’ only needed once for 2 marks

Q33.
(a) (i) (initially there is) oxygen
accept:
oxygen hasn't been used up yet (so not anaerobic conditions yet)
(so) aerobic respiration (by microorganisms)
accept (because) methane is produced in anaerobic (fermentation)
producing CO_{2} (which does not burn)
accept there is no methane ignore inflammable
(ii) (peelings had) the most carbohydrate / organic material answer must be comparative accept contained more microorganisms / decomposers / bacteria ignore water do not allow fat or protein
(b) (i) $0.22 / 0.221$ correct answer with or without working gains 2 marks
allow 0.2 for 1 mark
allow 22.1 for 1 mark
allow 0.34×65 / 0.65 for 1 mark
genes / inheritance
ignore 'variety'
OR
any correct named biotic factor e.g. predation / disease
(b) mass of crop also depends on number of pods (per plant) / size / mass of each pea ignore number of plants
decompose / rot / break down / decay / digest
ignore feed / eat
(these organisms) respire
do not allow respiration by pea (plants)
(decay / respiration / microorganisms etc) releases carbon dioxide do not allow combustion / fossilisation

Q35.
(a) extremophile(s)
(b) (i) common (periwinkle) and flat (periwinkle) either order, both required
(ii) (common and flat) both live in the same habitat / area / named area allow habitats overlap the most
(iii) any two from:

- would have wrong food
- would otherwise be exposed to (specific) predators
- cannot tolerate extended exposure to air or reduced submersion in seawater
allow cannot tolerate temperature / dehydration
- cannot tolerate high salt concentration (in rock pools) allow low salt concentration (in rock pools)
- cannot compete with small periwinkle

Q1.
The photographs show four different species of bird.

Great tit

© JensGade/iStock
Coal tit

Blue tit

© Marcobarone/iStock
Long-tailed tit

The table gives information about the four species of bird in winter.

Bird species	Mean body mass in grams	Mean energy needed in kJ per day	Mean percentage of day spent feeding
Great tit	21	84.2	75
Blue tit	12	62.4	81
Coal tit	9	49.5	88
Lond-tailed tit	7	42.0	92

(a) (i) Calculate the energy needed per day per gram of body mass for the blue tit.
\qquad
\qquad
\qquad
Answer = \qquad kJ per day per gram of body mass
(ii) Describe the trend for energy needed per day per gram of body mass for the four species of bird.
\qquad
\qquad
\qquad
(iii) Suggest an explanation for the trend you have described in part (a)(ii).
\qquad
\qquad
\qquad
\qquad
(b) Describe and explain the trend shown by the data for the time spent feeding in winter for the birds.
\qquad
\qquad
\qquad
\qquad

Q2.
Some students wanted to find the number of thistle plants growing on a lawn.
The students placed 10 quadrats at different positions on the lawn.
Each quadrat measured 1 metre $\times 1$ metre.
The students counted the number of thistle plants in each quadrat.
(a) Which method should the students use to decide where to place the 10 quadrats?

Tick (\checkmark) one box.

Place the quadrats as evenly as possible around the lawn.

Place 5 quadrats in areas with many thistle plants and 5 quadrats in areas with only a few thistle plants.

Place all the quadrats randomly on the lawn.

(b) The diagram shows the lawn with the positions of the thistle plants and the students' 10 quadrats.

(i) Complete the table to show:

- how many thistle plants the students found in each of the first four quadrats
- the total number of thistle plants found in all 10 quadrats.

Quadrat number	Number of thistle plants in each quadrat
1	
2	
3	1
4	3
5	0
6	0
7	2
8	1
10	
Total	

(ii) Calculate the mean number of thistle plants in one quadrat.
\qquad
Mean = \qquad
(iii) The lawn measured 12 metres long and 10 metres wide.

Use your answer from part (b)(ii) to estimate the number of thistle plants on the lawn.
\qquad
\qquad
Estimated number of thistle plants $=$ \qquad
(c) How could the students make their estimate more accurate?

EXAM PAPERS PRACTICE

Q3.
Some students studied bluebell plants growing in two different habitats.
Habitat A was a sunny field next to woodland.
Habitat B was a shady, moist woodland.
A bluebell plant can have several flowers on one flower stalk. The students counted the number of flowers on each of 40 bluebell flower stalks growing in each habitat.
The bar charts show the results.
Habitat A: Sunny field next to woodland

Habitat B: Shady, moist woodland

(a) The students wanted to collect valid data.

Describe how the students should have sampled the bluebell plants at each habitat to collect valid data.
\qquad
\qquad
\qquad
\qquad
(b) (i) The students used the bar charts to find the mode for the number of flowers per stalk in the two habitats.

The mode for the number of flowers per stalk in habitat A was 11.
What was the mode for the number of flowers per stalk in habitat \mathbf{B} ?
Mode =
\qquad
(ii) The students suggested the following hypothesis:
'The difference in the modes is due to the plants receiving different amounts of sunlight.'

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iii) Suggest how the students could test their hypothesis for the two habitats.
\qquad
\qquad
\qquad
\qquad
(c) Suggest how receiving more sunlight could result in the plants producing more flowers per stalk.
\qquad
\qquad
\qquad
\qquad

Gardeners often collect fallen leaves in autumn and place them on compost heaps.

(a) Over the next year the leaves decay.

Which living things cause decay?
\qquad
(b) The leaves decay more quickly in summer than in winter.

Give one reason why.
\qquad
\qquad
(c) The compost heap has holes in its sides to let gases enter.

Which gas is needed for decay?
Tick (\checkmark) one box.

Q5.

Gardeners often put waste material onto compost heaps.
The graph shows how the conditions in a compost heap affect how quickly waste material
in the compost heap decays.

(a) (i) Describe the effect of increasing the temperature from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ on the rate of decay at 20% oxygen concentration.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Gardeners are advised to put waste materials into special compost bins. These bins have holes in their sides.

Holes in the sides of the compost bin help the waste materials to decay faster.
Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A gardener noticed that some of his plants were growing poorly.

The gardener put some decayed compost onto the soil, around the plants.
One month later the plants were growing well.
Explain why.
\qquad
\qquad

Q6.
The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids that are fed into the reactor must be kept very low.

Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

A higher concentration contains too much carbon dioxide.

(b) The pie chart shows the percentages of the different gases found in the biogas.

Gas \mathbf{X} is the main fuel gas found in the biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane
nitrogen
oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
Percentage of gas $\mathbf{X}=$ \qquad
(c) If the biogas generator is not airtight, the biogas contains a much higher percentage of carbon dioxide.

Draw a ring around one answer in each part of this question.
aerobic respiration.
(i) The air that leaks in will increase the rate of
anaerobic respiration. fermentation.
(ii) The process in part (c)(i) occurs because the air contains ammonia. nitrogen. oxygen.

Q7.

The mould Penicillium can be grown in a fermenter. Penicillium produces the antibiotic penicillin.

The graph shows changes that occurred in a fermenter during the production of penicillin.

(a) During which time period was penicillin produced most quickly?

Draw a ring around one answer.

$$
0-20 \text { hours } \quad 40-60 \text { hours } \quad 80-100 \text { hours }
$$

(b) (i) Describe how the concentration of glucose in the fermenter changes between 0 and 30 hours.
\qquad
\qquad
\qquad
\qquad
(ii) How does the change in the concentration of oxygen in the fermenter compare with the change in concentration of glucose between 0 and 30 hours?

Tick (\checkmark) two boxes.

The oxygen concentration changes after the glucose concentration.

The oxygen concentration changes before the glucose concentration.

The oxygen concentration changes less than the glucose concentration.

The oxygen concentration changes more than the glucose concentration.
(iii) What is the name of the process that uses glucose?

Draw a ring around one answer.

$$
\begin{array}{lll}
\text { distillation } & \text { filtration } & \text { respiration }
\end{array}
$$

Q8.
The diagram shows one type of anaerobic digester. The digester is used to produce biogas.

(a) (i) What does anaerobic mean?
\qquad
\qquad
(ii) The concentration of solids that are fed into this digester must be kept very low.

Suggest one reason why.
\qquad
\qquad
(iii) This digester is more expensive to run than some other simpler designs of biogas generator.

Suggest one reason why.
\qquad
\qquad
(b) The graph shows how the composition of the biogas produced by the digester changed over the first 30 days after the digester was set up.

Percentage of each gas in the biogas

Use information from the graph to answer the following questions.
(i) Describe how the percentage of carbon dioxide changed over the 30 days.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) On which day was the best quality biogas produced? \qquad
(c) Four days after the digester was first set up, the biogas contained a high percentage of carbon dioxide.

Suggest an explanation for this.
\qquad
\qquad
\qquad
\qquad

Q9.
Microorganisms can decay potatoes.
(a) Microorganisms obtain carbohydrates from the potato to use inside their cells.

Describe how.
\qquad
\qquad
\qquad
\qquad
(b) A group of students investigated decay in potatoes.

The students made the hypothesis:
'The higher the temperature the faster the potato will decay.'
The students:

- cut five 50 g cubes of potato and put each one in a Petri dish
- kept each dish at a different temperature for 14 weeks
- measured the mass of each potato cube every week and recorded the mass.

The results are shown in the graph.

(i) The potato cubes decreased in mass over the 14 weeks.

Explain why
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Do the students' results support their hypothesis?

Explain your answer
\qquad
\qquad
\qquad
\qquad

Q10.

Human activities affect the environment.
(a) Deforestation results in an increase in carbon dioxide levels in the atmosphere.

Give two reasons why.
\qquad
\qquad
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A dairy farmer washes out his cow shed each day. The waste water contains urine and faeces. The waste water overflows into a stream by mistake.

The waste water will have an effect on the plants and invertebrates living in the stream.

Explain why.
\qquad

Q11.
Students investigated the distribution of a green alga on a tree trunk.

The students:

- tied a piece of string horizontally round a tree
- put a quadrat on the string so that the quadrat faced south
- estimated the percentage of the area in the quadrat covered with the green alga
- repeated the observation with the quadrat facing south west, west, north west, north, north east, east and south east.
(a) The diagram shows the quadrat the students used.

Describe how you would estimate the percentage of the area covered with the green alga in one quadrat.
\qquad
\qquad
\qquad
\qquad
(b) The bar chart shows the students' results.

(i) How does the direction that the quadrat faced affect the percentage area covered with the green alga?
\qquad
\qquad
\qquad
\qquad
(ii) What was the mode of the percentage area covered with the green alga?

Mode = \qquad \%

Give the reason for your answer.
\qquad
\qquad
(iii) Give three environmental factors that might affect the distribution of the green alga on the tree.

1. \qquad
2. \qquad
3. \qquad
(iv) Suggest how one of the factors you gave in part (b) (iii) might have caused the distribution of the green alga shown on the bar chart.

Factor \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Nitrophyte lichens grow on the bark of trees. These lichens are indicators of air pollution by ammonia. Ammonia concentrations in the atmosphere are often high in agricultural areas.
The graph shows the relationship between air quality and the distribution of nitrophyte lichens.

© U.S. Department of Agriculture
(i) Describe the relationship between atmospheric ammonia and the abundance of nitrophyte lichens.
\qquad
\qquad
\qquad
\qquad
(ii) How useful would a particular value for the abundance of nitrophyte lichens be as an indicator of ammonia pollution of the atmosphere?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(Total 16 marks)

Q12.

This question is about recycling.
The pie chart shows the different types of waste from an average household in England.

(a) In 2010, councils in England collected 23 million tonnes of waste from households. Most of the waste was put into landfill sites.
Councils pay to use landfill sites.
Organic kitchen waste can be put onto compost heaps.
Calculate the mass of organic kitchen waste from households that could have been put onto compost heaps in 2010.
\qquad
\qquad
Answer = \qquad million tonnes
(b) Some householders put organic kitchen waste onto their compost heaps.
(i) Suggest one advantage of this to the council.
\qquad
\qquad
(ii) Suggest one advantage of this to the householder.
\qquad
\qquad

Q13.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The diagram shows part of the carbon cycle.

Describe how living things are involved in the constant cycling of carbon.
\qquad
(Total 6 marks)

Q14.

Plankton live in the sea.
Animal plankton eat plant plankton.
Graph 1 shows how the populations of the plankton change through the year in the seas around the UK.

Month
(a) Basking sharks eat animal plankton. Basking sharks grow up to 8 metres long.

Look at the diagram and Graph 1.

Which is the correct shape for the pyramid of biomass to show the relationship between plant plankton, animal plankton and basking sharks, in June?

Tick (\checkmark) one box.

Graph 1 is repeated here to help you answer the following questions.

Graph 2 shows changes in some of the conditions in the upper layers of the sea around the UK.

Graph 2

Key

- Light
$-\ldots--$ Mineral ions
--- Temperature

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
(b) The population of plant plankton increases between February and April.

Suggest one reason for the increase.
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(c) The population of animal plankton changes between April and July.

Suggest explanations for the changes.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The concentration of mineral ions changes between February and December. Suggest explanations for the changes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q15.
Some students were asked to investigate the distribution of clover in a field of grass.
They noticed that the clover grew in patches amongst the grass.
(a) The students decided to use quadrats.

Describe how the students should decide where to place the quadrats to investigate the distribution of the clover.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows one of the quadrats the students used.

(i) Estimate the number of squares of the quadrat covered with clover.
\qquad
Number of squares $=$ \qquad
(ii) Describe how you worked out your answer to part (b)(i).
\qquad
\qquad
\qquad
(iii) Use your answer from part (b)(i) to calculate the percentage of the quadrat covered by the clover.
\qquad
\qquad
\qquad
Answer = \qquad \%
(c) Suggest one factor that could account for the distribution of the clover plants.
\qquad

Q16.

Garden waste can be recycled.
One way of recycling garden waste is to use a compost bin.
The diagram shows two types of compost bin.
Each bin can contain the same amount of waste.

Fixed compost bin
Lid to add

Tumbler compost bin

Information about the compost bins is given below.

Fixed compost bin

- Compost can be taken out after two years.
- The bin costs about $£ 40$.
- The bin takes up an area of $1 \mathrm{~m}^{2}$.

Tumbler compost bin

- The bin is turned twice a day using the handle.
- Six weeks later compost can be taken out.
- The bin costs about $£ 80$.
- The bin takes up an area of $2 \mathrm{~m}^{2}$.
(a) A gardener is buying a compost bin.
(i) Give one advantage to the gardener of buying a tumbler compost bin and not a fixed compost bin.
\qquad
\qquad
(ii) Give two advantages to the gardener of buying a fixed compost bin and not a tumbler compost bin.

1. \qquad
2. \qquad
(b) The same amounts of waste were added to the two types of bin.

The graph shows the temperature in the bins in the first six weeks after the waste was added.

(i) Give two differences between the results for the tumbler compost bin and the fixed compost bin.

1. \qquad
\qquad
2. \qquad
(ii) Complete the sentences.

The waste is converted into compost by organisms
called \qquad
The conversion of waste into compost works best in warm, moist and \qquad conditions.
(iii) There was a big difference in the final temperatures in the two bins.

Suggest an explanation for this temperature difference.

Q17.

Students investigated a food chain in a garden.
The students found 650 aphids feeding on one bean plant.
Five ladybirds were feeding on the aphids.

Photograph supplied by Hemera/Thinkstock
(a) (i) Draw a pyramid of biomass for this food chain.

Label the pyramid.
(ii) The biomass in the five ladybirds is less than the biomass in the bean plant.

Give two reasons why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The carbon in dead bean plants is returned to the atmosphere via the carbon cycle.

Describe this part of the carbon cycle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)

Q18.

In a woodland, bluebells grow well every year.
Bluebells growing well in woodland

Mick Garratt [CC-BY-SA-2.0], via Wikimedia Commons
Each year the dead flowers and leaves of the bluebells and leaves from the trees fall onto the ground.
The bluebells do not run out of mineral ions.
Explain why the bluebells do not run out of mineral ions.
The words in the box may help you.

roots	dead leaves microorganisms	mineral ions decay

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)

Q19.
The diagram shows the annual energy flow through $1 \mathrm{~m}^{2}$ of a habitat.
The unit, in each case, is kJ per m^{2} per year.

(a) Calculate the percentage of the energy absorbed by the grass from sunlight that is
transferred to the frog.
Show clearly how you work out your answer.
\qquad
\qquad
Answer \%
(b) All of the energy the grass absorbs from the sun is eventually lost to the surroundings.

In what form is this energy lost?
\qquad
(c) Food chains are usually not more than five organisms long.

Explain why.
To gain full marks you must use data from the diagram.
\qquad
\qquad
\qquad
\qquad
(d) In this habitat microorganisms help to recycle materials.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAM PAPERS PRACTICE

Grass by By Catarina Carvalho from Lisboa, Portugal (Flickr) [CC-BY-2.0], via Wikimedia Commons. Grasshopper by I, Daniel Schwen [GFDL, CC-BY-SA-3.0], via Wikimedia Commons. Frog by Brian Gratwicke (Pickerel Frog) [CC-BY-2.0], via Wikimedia Commons. Heron by Glen Fergus (Own work, Otago Peninsula, New Zealand) [CC-BY-SA-2.5], via Wikimedia Commons.

Q20.
Some scientists set up a biogas generator.
The table shows how the rate of biogas production and the composition of the biogas changed over the first 30 days.

Time in days	Rate of biogas production in $\mathbf{c m}^{3}$ per hour	Composition of the biogas	
		Percentage of methane	Percentage of carbon dioxide
1	110	27	56
5	90	20	78
10	50	30	68
15	170	68	30
20	115	72	26
25	110	71	27
30	105	70	28

(a) (i) Name the process that produces the methane in biogas.
\qquad
(ii) For the first 10 days, the gas released from the generator contained a high concentration of carbon dioxide. This was because there was air in the generator when it was first set up.

Explain why the presence of air results in a high concentration of carbon dioxide in the biogas.
\qquad
\qquad
\qquad
(b) The scientists concluded that it would not be profitable to collect biogas from the generator until after about 20 days.

Use the data to explain why.
\qquad
\qquad
(c) The rate of biogas production slowed down towards the end of the investigation.

Suggest one reason why.
\qquad
\qquad

Q21.
Green plants are found at the start of all food chains.
(a) Complete the sentences.
(i) The source of energy for green plants is radiation from the \qquad
(ii) Green plants absorb some of the light energy that reaches them for a process called \qquad
(b) Draw a ring around the correct answer to complete each sentence.

(ii) The process uses the gas
carbon dioxide. oxygen.
water.
(iii) The process produces carbon-containing compounds called
carbohydrates.
minerals.
salts
(c) The amount of living material (biomass) at each stage in a food chain is less than at the previous stage.

The diagram shows a food chain.
oak tree \longrightarrow caterpillar \longrightarrow blue-tit \longrightarrow hawk

Give two ways in which biomass is lost in this food chain.
Tick (\checkmark) two boxes.

As carbon dioxide from the caterpillar

As food eaten by the hawk

As oxygen from the oak tree
\square

EXAM PAPERS PRACTICE

By Thomas Quine [CC BY-SA 2.0], via Wikimedia Commons
(a) Explain why the body of the baby mammoth did not decay.
\qquad
\qquad
\qquad
\qquad
(b) Mammoths are closely related to modern elephants. The pictures show these two animals.

What scientists think a mammoth looked like

By WolfmanSF (Own work) [CC-BY-SA-3.0], via Wikimedia By Caitlin from Hertfordshire, UK [CC-BY-2.0], via Commons

Modern elephant

By Caitlin from
Wikimedia Commons

Mammoths are extinct. What does extinct mean?
(c) Scientists believe they may be able to use adult cell cloning to recreate a living mammoth.

The scientists will use a skin cell from the baby mammoth.
The diagrams show how the skin cell will be used.

In each question, draw a ring around the correct answer.
(i) What type of cell is cell \mathbf{A} ?
skin cell
egg cell
sperm cell
(ii) Part \mathbf{B} is removed from cell \mathbf{A}.

What part of the cell is part \mathbf{B} ?

$$
\text { nucleus } \quad \text { cytoplasm } \quad \text { cell membrane }
$$

(iii) After cell \mathbf{C} is formed, it divides into embryo cells.

What is done to cell \mathbf{C} to make it divide?

Cell \mathbf{C} is | iseated with enzymes. |
| :--- |
| mixed with sperm cells. |
| given an electric shock. |

(iv) The embryo cells form a ball of cells. The ball of cells will be put into female elephant, E.

Which part of elephant \mathbf{E} is the ball of cells put into?
womb
stomach
ovary
(d) The scientists expect any offspring of the adult cell cloning to look like a mammoth and not like an elephant.

Why?
\qquad
\qquad
(Total 8 marks)

Q23.
The diagram shows part of a carbon cycle in a habitat.

(a) Name the processes shown by arrows \mathbf{X} and \mathbf{Y}.

X

Y \qquad
(b) Describe the part played by algae in this carbon cycle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) In tropical rainforests process \mathbf{X} is much faster than in most other habitats.

Suggest why.
\qquad
\qquad
\qquad
\qquad

Q24.
The diagram shows the annual flow of energy through a habitat.
The figures are in $\mathrm{kJ} \mathrm{m}^{-2}$.
Sunlight
4×10^{6}

(a) (i) Calculate the percentage of the energy in sunlight that was transferred into energy in the green plants.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Answer = \%
(ii) Suggest reasons why the percentage energy transfer you calculated in part (a)(i) was so low.
\qquad
\qquad
\qquad
\qquad
(b) Compare the amount of energy transferred to the insect-eating birds with the amount transferred to the predatory birds.

Suggest explanations for the difference in the amount of energy transferred to the two types of bird.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q25.

Some students investigated the distribution of some of the plants growing in and around a shallow stream. They sampled along a transect line.

The diagram shows their results.

\qquad
(ii) Only one species grew in the marsh, the swamp and in the aquatic zones.

Which species?
\qquad
(iii) Duckweed grows floating in water. What evidence is there for this in the students' results?
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Describe how you would use a ${ }^{\frac{1}{2}}$-metre $\times{ }^{\frac{1}{2}}$-metre quadrat frame and a 30 -metre tape measure to obtain data similar to the data shown in the diagram.

You should include details of how you would make sure that you would obtain valid results.
\qquad

Q26.

Norway has a large fishing industry. Norwegian scientists investigated the effect of adding waste fish fat to cattle manure to improve the production of biogas.

The scientists set up many jars containing different concentrations of fish fat added to the cattle manure. The air in each jar was removed and replaced with pure nitrogen gas.

The diagram shows how one of these jars was set up.

EXAM PAPERS PRACTICE
Nitrogen gas from cylinder

The scientists then kept all the jars in an incubator at $35^{\circ} \mathrm{C}$ for 6 weeks.
(a) The scientists sealed each jar with a layer of rubber and replaced the air in the jars with nitrogen gas.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The scientists removed samples of gas from each jar at intervals over the 6 weeks.

The table shows some of the scientists' results.

Contents of jar	Yield of biogas in $\mathbf{c m}^{3}$ per gram	Yield of methane in $\mathbf{c m}^{3}$ per gram	Proportion of methane in the biogas
Cattle manure	426	256	0.60
Cattle manure $+2.5 \%$ fish fat	686	426	

EXAM PAPERS PRACTICE

Cattle manure $+5 \%$ fish fat	861	543	0.63
Cattle manure $+10 \%$ fish fat	999	630	0.63

(i) The final column of the table shows the proportion of methane in the biogas.

Apart from the methane and the added nitrogen, name the other gas that makes up most of the rest of the biogas.
\qquad
(ii) Calculate the proportion of methane in the biogas when 2.5% fish fat was added to the manure.

Show clearly how you work out your answer.
\qquad
\qquad
Proportion of methane $=$ \qquad
(iii) Describe the effects on biogas production of adding fish fat to cattle manure.
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Olaf is a Norwegian farmer. Olaf's farm is 110 kilometres from the sea. He has a biogas generator on his farm. Olaf adds manure from his 50 cattle to his biogas generator.

Olaf decided not to add fish fat to his biogas generator.
Suggest one reason why.
\qquad
\qquad

Q27.
The amount of carbon dioxide in the atmosphere is increasing.
The table shows the estimated mass of carbon dioxide exchanged with the atmosphere in one year.

	Mass of carbon dioxide exchanged with the atmosphere in millions of tonnes	
	Passed out into the atmosphere	Taken in from the atmosphere
Plants	30	64
Animals	10	0
Microorganisms	24	0
Combustion	6	0

(a) (i) Calculate the total mass of carbon dioxide passed out into the atmosphere in one year.

Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad million tonnes
(ii) Calculate the increase in the mass of carbon dioxide in the atmosphere in one year.

You should use your answer to part (a)(i) in your calculation.
Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad million tonnes
(b) Draw a ring around the correct answer to complete the sentence.
decomposition.

Plants use carbon dioxide in the process of
photosynthesis.
respiration.

Q28.
Animals in a habitat compete with each other.
(a) Give two factors for which animals may compete.

1. \qquad
2. \qquad
(b) The photographs show a mule deer and a white-tailed deer.

Mule deer by Dcrjsr (Own work) [CC-BY-3.0], via Wikimedia Commons. White-tailed deer by Clay Heaton (Own work) [CC-BY-SA-3.0], via Wikimedia Commons

Mule deer and white-tailed deer live together in the same national park in the USA.
The graph shows changes in the populations of the two deer species between 1983 and 1999.

(i) Describe the changes in the population of white-tailed deer between 1991 and 1995.
\qquad
\qquad
\qquad
\qquad
(ii) Use information from the graph to suggest an explanation for changes in the population of white-tailed deer between 1991 and 1995.
\qquad
\qquad
\qquad
\qquad

Q29.
The table shows energy transfers in a large insect and a small mammal.

Both animals feed mainly on grass.

Energy transfer	Amount of energy in kJ.	
	Large insect	Small mammal
Eaten as grass	4.00	25.00
Absorbed into body	1.60	12.50
Leaves body as faeces	2.40	12.50
Production of new tissue	0.64	0.25
Transferred by respiration	0.96	12.25

(a) What percentage of the energy in food is transferred into new tissue in the large insect?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Answer =
(b) The proportion of energy in the food transferred into new tissue is much greater in the large insect than in the small mammal.

Explain why as fully as you can.
You should include references to the data in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q30.
A fish farmer keeps trout in a large net in a lake.

The fish farmer feeds the trout on food made from soya beans.
When the trout are large enough the farmer sells them for food for people.
(a) Draw a pyramid of biomass for the three organisms in this food chain.

Label the pyramid.
(b) It would be more energy efficient if people ate the soya beans rather than eating the trout.

Which two of the following are reasons for this?
Tick (\checkmark) two boxes.

Some people do not like eating animals such as trout. \square

The trout release energy when they respire.

Soya bean plants release energy when they respire.
\square
\square

Some energy will be lost in waste from the trout.

Soya bean plants absorb energy during photosynthesis. \square
(c) Suggest one advantage to the fish farmer of keeping the trout in a large net instead of letting them swim freely in the lake.
\qquad
\qquad
(d) Some trout die before they are large enough to be sold. The dead trout contain carbon.

Use your knowledge of the carbon cycle to describe how this carbon is returned to the atmosphere after the trout die.
\qquad
\qquad
\qquad
\qquad
\qquad

Q31.
The diagram shows one type of biogas generator.

(a) Give two advantages of having the biogas generator underground.

Tick (\checkmark) two boxes.

It allows the digested slurry to soak into the soil

The biogas produced will be at a lower pressure. \square

Very little of the biogas generator will be seen. \square

It prevents unpleasant smells escaping.

The temperature inside will not change much.

(b) The table shows the percentages of the different gases found in this biogas.

Gas	Percentage
Carbon dioxide	35.0
Hydrogen sulfide	1.5
Ammonia	1.5

EXAM PAPERS PRACTICE

Water vapour	2.0
Gas \mathbf{X}	

Gas \mathbf{X} is the main fuel gas found in biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
hydrogen
methane
oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Percentage of gas $\mathbf{X}=$ \qquad

Q32.
Biogas can be produced from waste materials that contain carbohydrates.
(a) Complete the sentence.

The main fuel gas present in biogas is \qquad
(b) The diagram shows one type of biogas generator.

(ii) It is important that the level of liquid in the inlet and in the overflow tank is above that of the slurry.

Explain why.
\qquad
\qquad
\qquad
(c) Temperatures in the UK are usually between $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

At a sewage works in the UK, some of the biogas produced from sewage sludge is burned and is used to heat water. The hot water is then pumped through metal pipes
which pass back through the biogas generator.
Explain why this would be helpful in biogas production.
\qquad
\qquad
\qquad
\qquad
\qquad

Q33.

Students investigated the distribution of two plant species near a busy road. The bar chart shows their results.

(a) (i) Name the piece of apparatus used in sampling a $1 \mathrm{~m}^{2}$ piece of land.
\qquad
(ii) Describe how this piece of apparatus could be used to obtain the data shown in the bar chart.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Describe the pattern shown in the data for the Plantain plants.
\qquad
\qquad
(b) Suggest explanations for:
(i) the distribution of the White deadnettle plants
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) the distribution of the Plantain plants.
\qquad
\qquad
\qquad
\qquad
\qquad

Q34.
This question is about what happens during decay.
Draw a ring around the correct word to complete each sentence.
(a) After living things die, they are decayed by
animals.
microorganisms.
plants.
(b) Decay happens faster when there is plenty of oxygen and conditions are
(c) During decay carbon dioxide is produced by
osmosis.
respiration.
photosynthesis
(d) Decay releases mineral salts into the soil.

(Total 4 marks)

Q35.
The diagram shows part of the carbon cycle.

(a) Letter \mathbf{A} represents respiration.

Which two other letters represent respiration?

(b) Other than carbon dioxide name two carbon compounds found in plants.

1. \qquad
2. \qquad
(c) Gardeners use compost heaps to decay dead plants. Decayed compost is then spread onto the soil in a garden.

Explain why gardeners spread decayed compost onto the soil.
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

(a) (i) 5.2
award 2 marks for correct answer, irrespective of working or lack of it
award 1 mark for $62.4 \div 12$ only with incorrect or no answer
(ii) the smaller the (mass of the) bird the more energy is needed (per gram of body mass)
allow converse
ignore figures
(iii) smaller bird has larger surface area : volume / mass ratio allow converse
so heat / energy lost more quickly
allow lose more heat / energy if (a)(ii) describes a trend of more energy with increasing body mass allow one mark for idea of more energy needed for flight
(b) larger birds spend less time feeding
accept converse
allow the less energy they need per day the longer they spend feeding
since they need less food per gram of body mass (to satisfy energy needs)

Q2.
(a) place all the quadrats randomly on the lawn
(b) (i) 14

22

32
40
all 4 counts correct

Total $=15$
total correct for their figures
(ii) 1.5
allow ecf from (b)(i)
(iii) 180
correct answer with or without working
if answer incorrect, allow 1 mark for $\frac{15}{10} \times 120$ or 15×20
or $\frac{15}{10} \times 12 \times 10$
or $1.5 \times 12 \times 10$ or 1.5×120
allow ecf from (b)(ii)
allow 1 mark if only 1 error
(c) use a larger sample size / more quadrats
ignore repeats but allow repeat in different places
ignore 'count them all'
or
use bigger quadrats

Q3.
(a) use of quadrat / point frame allow description
randomly placed / random sampling
ignore reference to transects
(b) (i) 6
(ii) more light in A / in field / where sunny
ignore sun
more / better / faster photosynthesis in A / with more light allow converse
(iii) use light meter / measure light intensity in both habitats
take many measurements at same time of the day

or

laboratory / field investigation with 2 batches high light and low light (1)
count or number of flowers in each (1)
counting point is dependent on investigation point
(c) more glucose / energy available
allow other named product eg protein
allow if more energy produced
for growth
dependent on ${ }^{\text {st }}$ mark

Q4.
(a) microorganisms / microbes / bacteria / fungi / decomposers
allow named example or mould ignore germs / worms / other detritivores
(b) (weather / it is) warm(er) / hot(ter)
accept optimum conditions for enzymes
allow cold(er) in winter ignore wet(ter) / light(er) / sun do not accept heat dries the leaves out
(c) oxygen
no mark if more than one box is ticked

Q5.
(a) (i) increase / higher / faster / quicker
numerical comparison eg from 30 to 60 or by 30 or it is 30 at $15^{\circ} \mathrm{C}$ and 60 at $25^{\circ} \mathrm{C}$
award 2 marks for doubles / goes twice as fast or 30 units more
(ii) any two from:

- oxygen / air (in)
ignore air out
do not accept lets oxygen
ignore reference to other substances / light passing in or out
- for microorganisms / bacteria / microbes / fungi / decomposers ignore microorganisms passing in ignore worms / germs / bugs / other detritivores
- (for aerobic) respiration (of microorganisms)
- let excess heat out ignore heat in
(b) compost contains minerals / nutrients / elements / ions / named allow improve drainage / moisture allow contains nitrogen ignore CO_{2} / food / goodness / fertiliser do not accept vitamins / glucose

Q6.
(a) a higher concentration would be difficult to stir
(b) (i) methane
(ii) 60

100-(5+35) but incorrect answer allow 1 mark
(c) (i) aerobic respiration
(ii) oxygen

Q7.
(a) 40-60 hours
(b) (i) decrease
$1^{\text {st }}$ slowly then faster / appropriate detail from the graph - e.g. from 7.8 to 0 / faster after 4 - 10h
(ii) oxygen after glucose
extra box ticked cancels 1 mark
oxygen less than glucose
(iii) respiration

Q8.
(a) (i) without oxygen
ignore reference to 'air'
(ii) otherwise difficult to stir / to pump / to transfer allow prevent 'clogging' owtte
(iii) need to stir / pump / heat
(b) (i) rises then falls
then levels / slight rise
quantitative descriptor

- e.g. to 80% / max. on day 4 / min. on day 16
accept other valid quantitative descriptor allow accuracy $\pm 1 / 2$ small square
(ii) $16 \quad$ (15.5 to 16.4)
(c) any two from:
- oxygen present
- $\quad\left(\mathrm{CO}_{2}\right.$ produced) by aerobic respiration
or not much anaerobic respiration
- not much methane / CH_{4} produced

Q9.
(a) any two from:

- (microorganisms) produce enzyme / amylase / carbohydrase
- to break down / digest starch / carbohydrate (in potato)
- into sugars / glucose
- which diffuse back into microorganism
accept decomposer / fungus / bacterium / cell
(b) (i) (microorganisms)
(accept bacteria / fungi / decomposers)

> digest the potato (starch)
> allow breakdown / feed on / consume / decompose do not accept eat
use starch / glucose / carbohydrate for respiration
which releases carbon dioxide / CO_{2} (into the atmosphere)
(ii) up to $40^{\circ} \mathrm{C}$ the potato took less time to decay / the rate is faster ignore yes / no
answers must be comparative
but at $50^{\circ} \mathrm{C}$ it took longer / the rate is slower
or
at $50^{\circ} \mathrm{C} /$ a high(er) temperature the enzymes have denatured accept at a higher temperature / above $40^{\circ} \mathrm{C}$

Q10.

(a) any two from:

- \quad fewer trees to take in carbon dioxide for photosynthesis
- decomposers / microorganisms respire (as they decay debris) releasing carbon dioxide
- burning of wood releases carbon dioxide
allow carbon dioxide released by burning fossil fuels in vehicles / factories
(b) Marks awarded for this answer will be determined by the Quality of

Communication (QC) as well as the standard of the scientific response.
Examiners should also refer to the information on page 5, and apply a 'best fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of some steps in the process but the order is not clear with little biological vocabulary used.

Level 2 (3-4 marks)

There is a reasonably clear description of the process involving many of the steps and using some biological vocabulary.

Level 3 (5-6 marks)

There is a clear, logical and detailed scientific description of the process using appropriate biological vocabulary.

examples of biology points made in the response:

- this contains mineral ions (and organic matter)
- this increases growth of algae / water plants
- the plants / algae (underneath) die
- due to lack of light / photosynthesis / space
- decomposers / microorganisms feed on decaying matter or multiply rapidly
- the respiration of decomposers uses up all the oxygen
- so invertebrates die due to lack of oxygen
- this is called eutrophication

Q11.
(a) estimate / count number of squares covered do not allow number of squares containing algae
divide by total number of squares and multiply by 100 / multiply by 4
(b) (i) any two from:

- more / most in North east facing
- followed by the North facing
- the South facing had no green alga / least
(ii) 40 (\%)
two directions had this value (rest of directions had only one) accept this is the most common percentage / value $2^{\text {nd }}$ mark only if 40(\%)
(iii) any three from:
- light / sunlight
ignore Sun / carbon dioxide
- temperature do not accept oxygen
- availability of water / humidity
- availability of nutrients
- wind
- pollution qualified eg SO_{2}, acid rain, soot
- grazing by animals eg slugs
- competition with other species
- pH
(iv) eg (for light)
allow overlap between factors
light intensity least on north / north east facing parts of tree (1)
green algae adapted for photosynthesis in low light intensities (1) allow, since less light from Sun, cooler so less evaporation
negative effect of high light intensity on green algal chlorophyll / photosynthetic pigments (1)
allow green algae unable to withstand desiccation
or (for temperature)
temperature highest on south (and west) facing parts of tree
(causing) more water to evaporate from this side of tree
green algae unable to withstand desiccation
or (for moisture / rainfal)
rainfall highest on north / north east facing parts of tree (1)
(giving) more moisture on this part of tree (1)
green algae less likely to desiccate (1)
or (for wind)
wind speed / duration greatest on south (and west) facing parts of tree (1)
(causing) more water to evaporate from this side of tree (1)
allow wind carries pollutants
allow pollutants toxic to algae
green algae unable to withstand desiccation (1)
or (from pollution)
from south / south west (1)
wind carries pollutants (1)
pollutants toxic to / kill algae (1)
(c) (i) as the concentration of ammonia increases so does the \% abundance of nitrophyte lichens
allow positive correlation / proportional
allow directly proportional
scattered results / wide spread
allow use of approximate numbers to demonstrate scattering

Or
for any value of one parameter there is a wide range of the other allow not a strong relationship / correlation
(ii) not very useful / unreliable
accept only gives a rough idea / only a general indication
for any value of one parameter there is a wide range of the other allow correlation rather than direct relationship

Or
scattered results

Q12.
(a) $8.05 / 8.1 / 8$
correct answer with or without working gains 2 marks allow 1 mark for 8.0 or 8.10
allow 35/100 $\times 23$ (million) for 1 mark if no answer or incorrect answer
allow 1 mark for 805 or 8050000
(b) (i) any one from:

- less landfill sites used
- less cost (of landfill sites) / saves money
- less effort / cost to collect
allow less to collect
(ii) compost can be used on garden allow idea of compost can be used to help plant growth or compost provides minerals / named or compost improves the soil

Q13.
Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance.

EXAM PAPERS PRACTICE

0 marks

No relevant content.

Level 1 (1-2 marks)

For at least one process either the organism that carries it out or the carbon compound used or the carbon compound produced is described or for at least one organism either the carbon compound it uses or the carbon compound it produces is described or at least one process is named

Level 2 (3-4 marks)

For some processes (at least one of which is named) either the organisms involved or the carbon compounds used or the carbon compounds produced are described

Level 3 (5-6 marks)

For at least one named process an organism and either the carbon compound used for the process or the carbon compound produced by the process are described and for other processes (at least one of which is named) either the organism or the carbon compounds used or the carbon compounds produced are described (as in Level 2)

Examples of Biology points made in the response:

- (green) plants photosynthesise
- photosynthesis takes in carbon dioxide
- (green) plants use carbon to make carbohydrate / protein / fat / organic compounds / named (e.g. enzymes / cellulose)
- animals eat (green) plants (and other animals)
- (green) plants respire
- animals respire
- respiration releases carbon dioxide
- (green) plants and animals die
- microorganisms decay / decompose / rot / break down / feed on dead organisms
- microorganisms respire

Q14.
(a)

(b) increasing / higher light / temperature
ignore references to months other than February - April do not accept mineral / ions increase
more / increased photosynthesis
for both marks there must be a reference to 'more' at least once (e.g. 'more light for photosynthesis' gains 2 marks) allow 1 mark for reference to light and photosynthesis without an idea of 'more'
decrease due to fall in plant plankton / food or decrease as eaten by (basking) sharks
allow decrease as eaten by predators / animals / fish
(d) fall due to use / intake by plant (plankton)
ignore ref to no change section of graph
for fall allow March / April
ignore May / February
increase due to decay / decomposition / breakdown
for increase allow any month in range August to November ignore December
of dead (plant / animal) plankton
allow of dead organisms / waste

Q15.
(a) chose places randomly
method of obtaining randomness, e.g. (grid and) random numbers allow thrown qualified e.g. over shoulder, eyes shut allow max 1 for mention of a transect with sampling at regular or random intervals
(b) (i) 7 or 8
allow fractions / decimals between 7 and 8
(ii) count number of whole squares and add estimate of area covered by part squares
allow reference to counting squares with $1 / 2$ cover or more
allow clear working on diagram and / or (b)(i)
(iii) $28-32$ (in range)
allow ecf
if answer incorrect allow 1 mark for reasonable reference to divided by 25 or multiplied by 4
(c) nutrients / minerals / ions / fertiliser / water allow light / pH / trampling / soil texture / grazing / mowing / weed killer / where seeds originally fell ignore pollution / soil / competition if unqualified ignore temperature / wind
(a) (i) (compost produced) quicker / faster / takes less time it = tumbler bin answers should be comparative eg only 6 weeks = 1 mark 6 weeks = 0 marks
(ii) any two from:

- takes less space
- cheaper (to buy)
- don't need to turn / rotate it
it = fixed bin
references to space and cost should be comparative do not accept unqualified data
(b) (i) any two from:
- faster rise (in tumbler)
- higher (in tumbler) or 2 correct number readings
- levels off (in tumbler) or continues to rise in fixed
it = tumbler bin
ignore eg faster compost
(ii) microorganisms / microbes / decomposers allow bacteria / fungi / detritus feeders / worms / other named examples of detritus feeders / mould
aerobic
allow air(y)
allow oxygen(ated)
(iii) faster respiration / decay / or microorganisms / microbes / decomposers work faster (in tumbler)
allow converse
allow bacteria / fungi / mould
so more heat produced (in tumbler)
ignore heat produced by friction

OR

more air / more oxygen(ation) (in tumbler) (1)
so more respiration / faster decay / bacteria work faster (in tumbler) (1)

Q17.
(a) (i) triangular pyramid with 3 layers
may be as blocks or as triangle
ignore food chains and arrows
layers appropriately labelled:
bean / plant
aphid,
ladybird
labelled in food chain order must not contradict correct pyramid
allow correctly labelled inverted pyramid for 2 marks
(ii) any two from:
(for aphid / ladybird)
ignore energy

- not all digested / faeces
- loss in urine
- loss of CO_{2}
ignore loss of $\mathrm{CO}_{2 \text { tron bean peant }}$
- not all eaten
if none of first 3 points given then allow waste (materials) / excretion for 1 mark
(b) microorganisms / microbes / bacteria / fungi / decomposers / detritivores /named do not accept germs allow mould ignore aphids

Q18.
any three from:
ignore references to carbon cycle
accept digested / decomposed / broken down / rotted for decay throughout ignore eating

- dead leaves / flowers / bluebells are decayed
- idea that microorganisms do the decaying
accept microbes / bacteria / fungi / mould / decomposers for microorganisms
- minerals / ions / nutrients / named released (by decay / microorganisms) not mineral ions unqualified
- (released) into soil or minerals / ions / nutrients taken up / in by (bluebell) roots (next year)
look for idea that minerals / ions / nutrients are in soil (eg released into soil or taken up from soil)

Q19.
(a) 0.18
if no answer or incorrect answer
allow 1 mark for 45×100 / 25000
(b) heat / thermal
allow heat from respiration
(c) energy / mass / biomass lost / not passed on or energy / mass / biomass is used or not enough energy / mass / biomass left ignore reference to losses via eg respiration / excretion / movement / heat
a sensible / appropriate use of figures including heron
eg only 2 from frog / to heron ignore units
(d) any three from:
accept marking points if candidate uses other terms for microorganisms

- (microorganisms) decay / decompose / digest / breakdown / rot ignore eat
- (breakdown) releases minerals / nutrients / ions / salts / named ignore food
- (microorganisms) respiration ignore other organisms respiring
- (microorganisms / respiration) release of carbon dioxide

Q20.
(a) (i) anaerobic respiration
or
fermentation
(ii) oxygen is present
accept O_{2}
do not accept O, O^{2} or O^{2}
aerobic respiration occurs
ignore anaerobic
CO_{2} from respiration allow from fermentation
(b) high methane after this time ignore CO_{2}
(c) organic matter / food / nutrients / named eg used up / reactants allow too hot / accumulation of toxins / named do not allow products ignore energy

Q21.
(a) (i) sun
ignore light
apply list principle
(ii) photosynthesis
apply list principle
allow approximate spelling
do not accept phototropism
(b) (i) chemical
(ii) carbon dioxide
(iii) carbohydrates
(c) As carbon dioxide from the caterpillar
if more than 2 boxes ticked deduct one mark for each additional incorrect box

As faeces (droppings) from the blue-tit

Q22.
(a) too cold / very cold or oxygen / microbes cannot reach it allow not enough energy / heat / warmth ignore frozen
for microorganisms / microbes / bacteria / fungi / enzyme / reaction (to work)
ignore other consumers
(b) no longer exist
or no more left
or died out / all died
ignore died unqualified
(c) (i) egg cell
(ii) nucleus
(iii) given an electric shock
(iv) womb
(d) has mammoth genes / chromosomes
accept genetic information / DNA / alleles / nucleus accept converse

Q23.
(a) X respiration
correct order only allow decay / decomposition / rotting ignore breakdown / disintegrate
\mathbf{Y} combustion / burning
(b) any three from:

- photosynthesise / absorb carbon dioxide
accept are producers or produce / make biomass / glucose / other named do not accept photosynthesis releases CO_{2}
- release carbon dioxide / respire
- eaten by animals
- fed on / decayed by microorganisms
ignore eaten by microorganisms
(c) any two from:
(in tropical rainforest conditions are)
- warm(er) / hot
- damp / moist / wet / humid ignore rain
- a lot of microorganisms
- a lot of material to decay
allow warm(er) so enzymes work faster for 2 marks

Q24.
(a) (i) 0.6 or 6×10^{-1}
for correct answer
if no / incorrect answer $\frac{2.4 \times 10^{4}}{4 \times 10^{6}} \times 100$
or 0.006 or $6 \times 10^{3 \text { sans } \text { maxk }^{2}}$
(ii) any two from:

- reflected
ignore some of light is green
- not absorbed or misses chloroplasts / chlorophyll
allow transmitted or passes through leaves
allow hits other plant parts
- wrong wavelength
- photosynthesis inefficient
accept other limiting factors / named
- allow some lost through respiration / as heat (from respiration)
(b) energy lost via faeces / not digested / waste / excreted (of insect-eating birds)
energy loss via respiration / movement / muscle contraction / heat (by insect-eating bird)
accept examples of muscle contraction
do not accept energy used for respiration
some of (insect eating) bird not eaten but all / most / more of insect is eaten

Q25.

(a) (i) (white) clover
(ii) reed sweet-grass allow reed allow grass
(iii) (only) found in swamp and aquatic zones or only found in water or doesn't grow in marsh ignore wet conditions
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a basic description which describes how a quadrat or a metre tape could be used to collect data

Level 2 (3-4 marks)

There is a clear description of how a quadrat and a metre tape could be used to collect data along a line

Level 3 (5-6 marks)

There is a clear, logical and detailed description of a method that will produce valid, repeatable results across / at intervals along the stream.
examples of procedural points made in the response:

- use of tape measure to produce transect
- placing of quadrats
- transect placed across stream
- score presence of each plant species
- use quadrat at regular intervals along tape
- repeat transect several times (≥ 3)
- along stream
- at random or regular intervals

Q26.
(a) (biogas / methane is made) by fermentation / anaerobic respiration accept reverse argument accept for 1 mark so no oxygen in jar or so oxygen can't enter or makes conditions anaerobic ignore references to keeping other microbes out ignore air
(b) (i) carbon dioxide
accept $\mathrm{CO}_{2} / \mathrm{CO} 2$
do not accept CO^{2}
(ii) 0.62 look for answer in table correct answer with or without working gains 2 marks allow 62\% for 2 marks but 62 for 1 mark if incorrect / no answer
$\frac{426}{686}$ gains 1 mark
(iii) (more fat \rightarrow much) more biogas / methane
allow more implied by giving two numbers or a subtraction / division
(more fat \rightarrow) only small increase in proportion / concentration / percentage of methane
allow increases only from 0.60 to 0.63 or only changes by 0.03
or approximately constant
or no change above 5%
(iv) fat (too) expensive or fat (too) expensive to transport (from coast to farm)
accept any suitable reference to extra cost / effect on environment eg more pollution from transport

Q27.
(a) (i) 70
award 2 marks for correct answer irrespective of working allow 1 mark for $30+10+24+6$ (with wrong answer or no answer), do not award this sum if other figure(s) are included in the addition
(ii) 6
award 2 marks for correct answer irrespective of working award 2 marks for correct answer to (a)(i) - 64 (ecf) award 1 mark either for 70 - 64 or answer to (a)(i) - 64 with no answer or incorrect answer
(b) photosynthesis.

Q28.
(a) any two from:

- food / feeding
ignore water
- mates / mating
- territory / space / land / shelter / nesting sites
ignore homes / place to live / habitat / resources
- status (within group)
(b) (i) rises to 1480 to 1500
or rises by 880 to 900
or rises until 1993
ignore incorrect figures if 1993 given
falls to 400 to 440 or falls by 1040 to 1100
if neither mark gained then allow 1 mark for rise followed by fall or fell by 160 to 200
(ii) rises because: -
less competition from mule deer or mule deer population falling or fewer mule deer
ignore reference to food / breeding
ignore reference to predation / disease
falls because: -
more competition from mule deer
or mule deer population rising
or more mule deer
ignore more / less suited to environment
if neither mark gained then correct reference to competition gains 1 mark

Q29.
(a) 16
accept correct answer for 2 marks, irrespective of working if no answer or answer incorrect accept 0.64×100 / 4 (.0) or 0.16 for 1 mark
(b) insect cold-blooded / not warm blooded or does not control body temperature accept mammal warm-blooded / constant (high) body temperature / controls body temperature
reference to insect $0.96(\mathrm{~kJ})$ and mammal $12.25(\mathrm{~kJ})$ transferred by respiration or relevant calculation of this transfer
ignore references to other data
(less respiration) so more energy / biomass / food available (for growth of insect) (more respiration) so less energy / biomass / food available (for growth of mammal)

Q30.
(a) three layer triangular pyramid either way up (as blocks or triangle)
(soya / beans / food - trout / fish - people / human (in sequence)
ignore reference to producers /herbivores / consumers award 1 mark only for a correct food chain with 2 correct arrows showing energy flow
(b) the trout release energy when they respire
some energy will be lost in waste from the trout
(c) any one from eg

- easy / easier to catch / more caught
allow easy / easier to monitor
- easy / easier to feed
allow control food
- no / less predation
allow less fishing / poaching
- less energy loss
allow grow faster
- less movement
ignore less space to move
do not allow easier to farm
(d) any two from:
- microorganisms / bacteria /decomposers / microbes / fungi /detritus feeders
- decay / rot / decompose / digest /break down ignore biodegrade
- (microorganisms) respire
do not award this mark if response implies the trout respire
- turned into fossil fuels / named fossil fuels
- carbon dioxide $/ \mathrm{CO}_{2 \text { reteased }}$

Q31.
(a) very little of the biogas generator will be seen cancel 1 mark for each extra box ticked
the temperature inside will not change much
(b) (i) methane
(ii) 60
correct answer with or without working $100-(35+1.5+1.5+2)$ but incorrect answer allow 1 mark

Q32.
(a) methane $/ \mathrm{CH}_{4}$
allow CH^{4} / CH4 / H4C
(b) (i) any two from:
ignore reference to smell

- less visual impact
- less heat loss
or
(better) insulated
or
temperature will be less variable /keeps warm / keeps cool or easier to maintain optimum temperature
- withstand pressure build-up
- ease of adding material / slurry
(ii) any one from:
- to keep anaerobic
- to prevent oxygen / air entering
- to prevent biogas escaping
- to maintain pressure / to allow removal of biogas
(c) any two from:
ignore to keep warm
- to maintain optimum temperature
if reference to specific temperature accept any value in range $26-40^{\circ} \mathrm{C}$ as optimum
- to speed up production of biogas
or
reference to faster microbial action / named microbial process
- UK temperature is low/below $25^{\circ} \mathrm{C}$

UK temperature is below optimum = $\mathbf{2}$ marks

- self sufficient / sustainable

Q33.
(a) (i) quadrat / grid
allow suitable description in a(i) or a(ii)
allow quadrant
(ii) any two from:

- use a transect / description
allow measure distance of the test or sample site from road
- sample every metre ignore random placing of quadrat
- count plants (in quadrat)
(iii) the nearer to the road, the more (plantain) plants accept the more dead nettles the less plantains
(b) (i) any two factors from: eg
- grow better / survive away from road
- sensitive to pollutant / named pollutant / dust / fumes ignore carbon dioxide as pollutant
- (roadside) weedkillers
- trampling /damage / turbulence
- grass cutting
- competition
- aspect eg hillier
or
give one mark for a factor and one mark for its effect eg
dust (from road) (1)
reduces photosynthesis (1)
or
'loses' in competition (1)
for light / water / nutrients / minerals / ions / space / soil (1) ignore food for plants
(ii) any two factors eg ignore distribution
- can withstand pollution allow grows better in polluted air ignore ${ }^{\text {sp }}$ prefer' pollution
- competition
- aspect eg flat
or

```
give one mark for a factor and
one mark for its effect eg
use carbon dioxide (from traffic) (1)
enhances photosynthesis (1)
or
'wins' in competition (1)
        ignore food for plants
for light / water / nutrients / minerals / ions / space (1)
```

Q34.
(a) microorganisms
(b) moist
(c) respiration
(d) roots

Q35.
(a) B and D
both required in any order
(b) any two from:
do not accept compounds restricted to animals

- carbohydrate / named example
allow 2 marks for 2 named examples
do not allow a general name and a named example for 2 marks (eg award 1 mark only for carbohydrate and starch)
- protein / enzyme
allow 2 marks for 2 named examples
- amino acid
- hormone / named plant hormone
- lipid / fat / oil / wax
- chlorophyll
- DNA
- vitamin(s)
(needed by plants) for health / better growth
for / help plant growth is insufficient
ignore moisture retention / soil structure
ignore more plants
allow examples linked to mineral eg contains magnesium to make chlorophyll for 2 marks

Q1.
The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids fed into the reactor must be kept very low.

Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen. \square

A higher concentration would be difficult to stir. \square

A higher concentration contains too much carbon dioxide. \square
(b) The pie chart shows the percentages of the different gases found in this biogas.

Gas \mathbf{X} is the main fuel gas found in this biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane
nitrogen
oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Percentage of gas $\mathbf{X}=$
(c) If the biogas generator is not airtight, the biogas will contain a much higher percentage of carbon dioxide.

Draw a ring around the correct answer to complete each sentence.
(i) The air that leaks in will increase the rate of
aerobic respiration. anaerobic respiration. fermentation.
(ii) The process in part (c)(i) occurs because the air contains
ammonia.
nitrogen.
oxygen.

Q2.
The diagram shows one type of anaerobic digester. This is used to produce biogas.

(a) (i) What does anaerobic mean?
\qquad
\qquad
(ii) The concentration of solids fed into this digester must be kept very low.

Suggest one reason why.
\qquad
(iii) This digester is more expensive to run than some other simpler designs of biogas generator.

Suggest one reason why.
\qquad
\qquad
(b) The graph shows how the composition of the biogas produced by the digester changed over the first 30 days after the digester was set up.

Percentage of each gas in the biogas

Use information from the graph to answer the following questions.
(i) Describe how the percentage of carbon dioxide changed over the 30 days.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) On which day was the best quality biogas produced? \qquad
(c) Four days after the digester was first set up, the biogas contained a high percentage of carbon dioxide.

Suggest an explanation for this.
\qquad
\qquad
\qquad
\qquad

Q3.
The diagram shows a pyramid of biomass drawn to scale.

(a) What is the source of energy for the water plants?
\qquad
(b) The ratio of the biomass of water plants to the biomass of insects is $5: 1$.

Calculate the ratio of the biomass of insects to the biomass of frogs.
Show clearly how you work out your answer.
\qquad
\qquad
ratio $=$ \qquad : 1
(c) Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population.

1. \qquad
\qquad
2. \qquad
\qquad
(d) Some insects die.

Describe how the carbon in the dead insect bodies may be recycled.
\qquad

Q4.
Some students investigated the production of biogas from animal manure.
They used the apparatus shown in the diagram.

In their first investigation, the students collected the biogas in the gas syringe.
The table shows the percentage composition of the biogas.

Gas	Percentage composition
Methane	55
Carbon dioxide	40
Water vapour	5

(a) To make the biogas a more efficient fuel, the percentages of two of the gases in the table should be reduced.

Which two gases should these be?

1. \qquad
2. \qquad
(b) The students then used the apparatus for a second investigation.

They bubbled oxygen through some fresh manure and water for one hour.
They then set up the apparatus again and collected a second sample of biogas in the gas syringe.

Predict the effect of this procedure on the composition of the second sample of biogas.

Explain your answer.
\qquad
(Total 5 marks)

Q5.
Gardeners often put waste materials onto compost heaps.
The graph shows how the conditions in a compost heap affect how quickly waste materials in the heap decay.

(a) (i) Describe the effect of increasing the temperature from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ on the rate of decay at 20% oxygen concentration.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Gardeners are advised to put waste materials into special compost bins. These bins have holes in their sides.

Holes in the sides of the compost bin help the waste materials to decay faster. Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A gardener noticed that some of his plants were growing poorly.

He put some decayed compost onto the soil, around the plants.
Six months later the plants were growing well.
Explain why.
\qquad
\qquad

Q6.
(a) Name the fuel gas present in biogas.
\qquad
(b) Name the process that produces biogas.
\qquad
(c) The graph shows the effect of temperature on the rate of biogas production.

(i) What is the best temperature for biogas production? \qquad ${ }^{\circ} \mathrm{C}$
(ii) In India, daytime temperatures can sometimes be higher than $40^{\circ} \mathrm{C}$. It is useful to place the biogas generator underground.

Use information from the graph to suggest why.
\qquad
\qquad
\qquad
\qquad
(d) Temperatures at the UK sewage works vary between $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. The UK biogas generator has concrete walls, 60 cm thick.

How does the thickness of the walls affect the rate of biogas production?
Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Q7.
The diagram shows part of the carbon cycle.

(a) Which letter, A, B, C or D, represents:
(i) respiration \qquad
(ii) photosynthesis?
(b) Local authorities are encouraging people to recycle vegetable waste by converting it into compost.

Compost is made by mixing the vegetable waste with soil in a large container.
(i) Decay occurs more quickly if the container has holes in the sides.

Explain why.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
(ii) Spreading compost on the soil between plants leads to better growth of the plants.

Explain why.
\qquad
\qquad

Q8.

Read the passage below about biogas production in Sri Lanka, which is a country with a much warmer climate than the UK.

Mr Ratnayake is a farmer. Using nothing more than cow dung, he has enough power to cook and provide heat and light for his home without using a single piece of wood. He collects the manure from his cows in their cattle shed. He then mixes the manure with water and leaves it to ferment in a large concrete pit. The gas produced is collected in a simple storage tank and is piped into his house for use.

The dried manure left after this biogas is generated is richer than ordinary manure. It makes a good organic fertiliser for Mr Ratnayake's crops. He can then sell his crops at a higher price as they are organic produce.
http://www. i-sis.org.uk
(a) (i) What is the fuel gas present in biogas?
\qquad
(ii) Name the process which produces biogas.
\qquad
(b) (i) Give two ways in which Mr Ratnayake benefits from making biogas as described in the passage.

1. \qquad
2. \qquad
(ii) This design of biogas generator works well in Sri Lanka. It would not work so well in the UK.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q9.
Gardeners often collect fallen leaves in autumn and place them on compost heaps.

(a) Over the next year the leaves decay.

Which living things cause leaves to decay?
\qquad
(b) The leaves decay more quickly in summer than in winter.

Give one reason why.
\qquad
\qquad
(c) The compost heap has holes in its sides to allow gases to enter.

Which gas is needed for decay?
Put a tick (v^{\prime}) in the box next to your choice.

Carbon dioxide \square
Nitrogen \square

Oxygen \square

Q10.
The diagram shows what happens to the energy in the food that a calf eats.

(a) Calculate the \% energy lost as urine and faeces (X).

Show clearly how you work out your answer.
\qquad
\qquad
Energy lost as urine and faeces \qquad \%
(b) The energy in the food eaten by the calf in one day is 6 megajoules.

Calculate the amount of this energy that would be used for growth. Show clearly how you work out your answer.

Energy used for growth \qquad megajoules
(c) Which process in the body transforms energy in food into heat?
\qquad
(d) The pictures show two methods of raising calves indoors.

Method $\mathbf{2}$ is now banned.

(i) Calves raised indoors grow faster than calves raised outdoors.

Suggest one reason why.
\qquad
\qquad
(ii) Method 2 was banned after public campaigns.

Suggest one reason why people campaigned against this method of rearing calves.
\qquad
\qquad
(Total 7 marks)

Q11.

The diagram shows one design of biogas generator used on a large dairy farm in the USA.

EXAM PAPERS PRACTICE

(a) What is the main, useful gas in biogas?

Draw a ring around one answer.
carbon dioxide hydrogen methane
(b) The insulation is installed so that biogas is produced at a faster rate.

Why is biogas produced at a faster rate?
\qquad
\qquad
(c) The table shows costs and income for this generator.

Item	Yearly costs in dollars	Yearly income in dollars
Electricity generated from biogas		22800
Heating from burning biogas		4200
Sale of fibre after biogas production		8000
Operation and maintenance costs	10000	

(i) Calculate the yearly profit from the biogas generator.

Show your working.
\qquad
\qquad
\qquad
(ii) It cost 200000 dollars to build the generator. Use your answer to part (c)(i) to
calculate how many years it would take to pay back this cost.
\qquad
\qquad
\qquad

Q12.
Red squirrels live in trees. They eat seeds from the cones of conifer trees. Squirrels store cones in 'larders' on the ground. These larders provide food through the winter. Each red squirrel makes and defends one larder.

Scientists monitor squirrel numbers to find the best habitats for the squirrel's survival. In one investigation, scientists estimated the numbers of squirrels in different types of woodland. Each woodland contains a different species of conifer tree.

Here is their method.

- Ten woods of each type of woodland were surveyed.
- In each wood scientists measured out two transects (strips), each 600 m long and 10 m wide.
- A scientist walked slowly down the centre of each transect, recording the number of squirrel larders he could see.

(a) (i) How many transects all together did the scientists survey in each type of woodland?

Number of transects \qquad
(ii) What was the total area surveyed in one wood?

Area \qquad m^{2}
(b) Name one variable that was controlled in this investigation.
\qquad
(c) (i) The scientists recorded the number of larders instead of the number of squirrels they saw.

Explain how this could have increased the accuracy of the investigation.
\qquad
\qquad
(ii) This method of counting the number of larders could have led to an inaccurate estimate of the number of squirrels.

Explain how
\qquad
\qquad
\qquad
\qquad
(d) The results of the investigation are shown in the graph.

EXAM PAPERS PRACTICE

Density of squirrels, in number of larders per hectare

The horizontal mark on each bar represents the mean number of larders per hectare of woodland.

The range of the number of larders observed for Douglas fir woodland was 0 to 1.9 per hectare.
(i) What was the range of the number of larders per hectare in the Spruce fir woodland?
\qquad
(ii) The highest mean number of larders per hectare was found in Blue spruce woodland.

Suggest one explanation for this.
\qquad
\qquad
(Total 8 marks)

Q13.

Invertebrate animals are used to monitor pollution in streams. The photograph shows scientists collecting a sample of invertebrates from a stream.

This is the method that they use.

- A $1 \mathrm{~m}^{2}$ area of the bed of the stream is marked out.
- A net 1 m wide is held by one person on the downstream side of the marked-out area.
- The other person uses their boots to gently move stones in this area of the stream bed. They do this for three minutes. This dislodges invertebrates which are then caught in the net.
- The invertebrates are then identified and counted.
(a) Name two control variables (variables which must be kept the same) in this investigation.

1. \qquad
2. \qquad
(b) Suggest two reasons why the results from a sample might not be accurate.
3. \qquad
\qquad
4. \qquad
\qquad

The technique described above was used to investigate the effect of sewage on stream invertebrates.

- Sample 1 was taken upstream of the point where the sewage entered the stream.
- Samples 2-9 were taken at regular intervals downstream of the sewage inflow.

The graph shows the results.
INDIVIDUALS PER 3-MINUTE KICK SAMPLE

(c) What was the range of the number of blackfly larvae that could be found in sample 7?
\qquad
(d) Describe, as fully as you can, how the number of water hoglice changed downstream from where sewage entered the stream.
\qquad
\qquad
\qquad
\qquad
(e) Which of the four invertebrates is the best indicator species for water which is not polluted by sewage?
\qquad
Give the reason for your answer.
\qquad
\qquad

Q14.

The lynx is a wild cat which lives in Canada. The table shows the number of lynx trapped in a part of Canada in certain years.

Year	Number of lynx in thousands
1918	45
1920	25
1922	10
1924	20
1926	40
1928	50

The snowshoe hare is another wild animal found in Canada. The graph shows the number of snowshoe hares trapped in the same years. The lynx eats the snowshoe hare.

(a) Draw a graph of the data in the table. The first two points have been plotted for you.
(b) From your graph, predict how many lynx were trapped in 1925.
\qquad thousand
(c) Use the information to answer the following.
(i) What would you expect to happen to the number of lynx trapped in 1930? Draw a ring around your answer.
rise fall stay the same
(ii) Give a reason for your answer to part (c)(i).
\qquad
\qquad
(d) The lynx is a predator. What is a predator?
\qquad
\qquad

Q15.

The diagram shows a food chain in a pond. The figures show the amounts of energy in each type of organism, in kilojoules per m^{2} of pond per year.

Flants
88000
:---:
14000
:---:
1600
:---:
88

(a) Calculate the percentage of the energy in the plants that is passed to the top carnivores. Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
Answer \qquad \%
(b) In the space below, draw a pyramid of biomass for this food chain. Label your
drawing with the names of the organisms.
(c) If humans ate organisms from this food chain, it would be more efficient to eat plants than to eat herbivores. Why is this?
\qquad
\qquad
\qquad
(Total 5 marks)

Q16.
The table shows the sources of some of the energy used in India between 1960 and 1970.

	Source of energy in millions of tonnes			
	Non-renewable fuels		Renewable fuels	
Year	Coal	Oil	Cow dung	Vegetable waste
1960	47	7	101	31
1965	64	10	112	34
1970	71	15	123	38

(a) The change in the use of renewable fuels differs from that of non-renewable fuels. Calculate the percentage of renewable fuels used in 1960 and in 1970. Show clearly how you work out your final answer.

1960 \qquad
\qquad

EXAM PAPERS PRACTICE
1970 \qquad
\qquad
(b) The Indian government suggested that villagers should make better use of renewable resources.

They introduced biogas generators. The diagram shows one type of biogas generator.

The table shows the economic costs and benefits of using this type of generator.

Feature	Cost or profit in £s
Cost of generator and fitting	250
Annual maintenance costs	40
Annual profit from gas produced	30
Annual profit from fertiliser produced	40

Evaluate the advantages and disadvantages of using this type of generator.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The table shows how temperature affects the rate of biogas production in the generator.

Temperature in ${ }^{\circ} \mathbf{C}$	10	15	20	25	30	35	40
Volume of biogas produced each day in m^{3}	0.50	0.55	1.50	1.70	3.00	3.45	3.30

(i) Use the grid to draw a graph to show how temperature affects the rate of biogas production.

(ii) Temperatures in India may reach over $35^{\circ} \mathrm{C}$. Explain the advantage of the generator being mainly underground.
\qquad
\qquad
\qquad
\qquad
(Total 12 marks)

Q17.

This is a simple food chain.

Lettuce plant \rightarrow Slug \rightarrow Frog \rightarrow Heron
The diagram shows a pyramid of biomass for this food chain.

\qquad
\qquad
\qquad
\qquad
(a) Write the names of the organisms in the food chain on the correct lines next to the pyramid of biomass.
(b) (i) The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant?
\qquad
(ii) What is the function of chlorophyll in a lettuce plant?
\qquad
(iii) The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly how you work out your final answer.
$\frac{(\text { Percentage of energy used by slugs) } \times(\text { Amount of energy in lettuce) }}{100}$
\square
Amount of energy $=$
I
\qquad
\qquad
\qquad
Amount of energy = \qquad kJ
(Total 5 marks)

Q18.
The photographs show two varieties of moths, Xand \mathbf{Y}. The moths belong to the same
species.
The moths are resting on a tree trunk in open countryside.

(a) Which variety of moth, \mathbf{X} or \mathbf{Y}, is more likely to be killed by insect-eating birds? Give a reason for your answer.

Variety of moth: \qquad
Reason \qquad
\qquad
(b) In an experiment, large numbers of each variety of moth were caught in a trap.

- They were marked with a spot of paint on the underside of one wing and then released.
- A few days later, moths were again trapped and the number of marked moths was counted.
- The experiment was carried out in a woodland polluted by smoke and soot, and also in an unpolluted woodland.

The results are shown in the bar graph.

(i) When the moths were being marked, suggest why the paint was put on the underside of the wing and not on the top.
\qquad
(ii) What percentage of moths of type \mathbf{X} was recaptured in:
the polluted woodland; \qquad
the unpolluted woodland? \qquad
(iii) In each woodland, only a small number of marked moths of both varieties were recaptured. Suggest one reason for this.
\qquad
\qquad
(c) (i) The colour of the moths is controlled by a gene. The dark form was first produced by a mutation in the gene.

What chemical, found in a gene, is changed by a mutation? Draw a ring around your answer.
carbohydrate DNA fat protein
(ii) Some of the offspring from the original dark moth were also dark. What caused this?
\qquad
\qquad

Q19.
Each autumn, many trees lose their leaves.
(a) Describe how carbon compounds in the leaves can be recycled so that they can be used again by the trees.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\qquad
(b) Give two environmental conditions which speed up the processes that you have described in part (a).

1. \qquad
2. \qquad

Q20.

Figure 1 shows a food chain containing three organisms.

Figure 1
(a) (i) In this food chain, name:
the predator; \qquad
the prey \qquad
(ii) What is the source of energy for the grass?

Draw a ring around one answer.

$$
\text { carbon dioxide light } \quad \text { nitrates } \quad \text { water }
$$

(iii) Figure 2 shows a pyramid of biomass for the organisms in Figure 1.

Write the names of the organisms on the correct lines in Figure 2.

Figure 2
(b) Waste materials, like faeces from the animals, will decay,
(i) What sort of organisms cause decay?
\qquad
(ii) Three of the following conditions help decay to occur rapidly.

Which conditions do this?
Draw a ring around each of the three answers.
aerobic anaerobic cold dry moist warm
(iii) The list below gives four substances. Two of these substances are produced by decay and can be used by the grass.

Which two substances are these?
Tick (\vee^{\prime}) two boxes.

Carbon dioxide \square

Mineral salts \square

Oxygen

Protein

Q21.
The diagram shows the flow of energy through a forest. The figures are in kilojoules of energy per square metre per year.

(a) What percentage of the energy in the trees is passed on as food for the carnivores? Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
(b) Give three reasons why so little of the energy in the trees is passed on to the carnivores.

1. \qquad
\qquad
2. \qquad
3. \qquad
\qquad

Q22.
(a) Use the words in the box to fill in the gaps in the diagram. You may use each word once or not at all.

(b) (i) Why are fungi called decomposers?
\qquad
(ii) Give one other type of decomposer.
\qquad

Q23.
(a) One food chain in the wood is:

$$
\text { Hazel tree nuts } \rightarrow \text { squirrels } \rightarrow \text { owls }
$$

(i) What does this food chain tell us?
\qquad
\qquad
(ii) Which one of the organisms in the food chain is a producer?
\qquad
(iii) This year the hazel bushes have produced very few nuts.

Explain, as fully as you can, how this might affect the populations of:

1. squirrels;
\qquad
\qquad
\qquad
\qquad
2. owls.
\qquad
\qquad
\qquad
\qquad
(b) An area of the floor of the wood $1 \mathrm{~m}^{2}$ was fenced off so that animals could not reach it. The graph below shows the depth of leaf litter (dead leaves) inside the fence over the next few months.

Explain, as fully as you can,
(i) why the depth of the leaf litter decreased;
\qquad
\qquad
(ii) how this decrease happened.
\qquad
\qquad
\qquad
(iii) In which month does leaf litter disappear fastest? Explain why.
\qquad
\qquad
\qquad
\qquad
(Total 11 marks)

Q24.

The diagram below shows a food web for a wood.

(a) The diagrams below show a pyramid of the numbers and a pyramid of the biomass for 0.1 hectare of this wood.

Pyramid of Kimasa
biomass (grams per square metre)

(i) Name one organism from the level labelled X .
\qquad
(ii) Explain, as fully as you can, why the level labelled Y is such a different width in the two pyramids.
\qquad
\qquad
\qquad
\qquad
(b) Explain, as fully as you can, what eventually happens to energy from the sun which is captured by the plants in the wood.
\qquad

Q25.

This is a diagram of a belt transect showing the major types of plants growing on the bottom of a lake.

(a) Suggest, and explain, two reasons why a much smaller population of Nitella plants is found amongst the Potamogeton plants than further down in the lake.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad
(b) Describe how you would use the belt transect technique to measure the abundance and distribution of plants which live on the bottom of a shallow lake.
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.

The diagram below shows a food web for some of the organisms which live in a pond.

You may need to use information from the food web to help you to answer the following questions.
(a) The algae photosynthesise. Complete the equation for photosynthesis.

(b) Only a small percentage of the Sun's energy captured by the algae is eventually incorporated into the body tissues of the stickleback. Explain, as fully as you can, what happens to the rest of the energy captured by the algae.
\qquad
(Total 10 marks)

Q27.

The diagram below shows a food web for some of the organisms which live in a pond.

(a) (i) Name one secondary consumer in this food web.
\qquad
(ii) The algae are small green plants.

Give three conditions needed by green plants to produce sugars.

1. \qquad
2. \qquad
3. \qquad
(b) This is a pyramid of biomass for the organisms in the aquarium.

Some of the biomass of the producers is not transferred to the tertiary consumers.
Explain, as fully as you can, what happens to this biomass.
(Total 10 marks)

Q28.
The diagram below shows the mass of carbon involved each year in some of the processes in the carbon cycle.

(a) Complete the equation for plant respiration.

(b) (i) Calculate the mass of carbon removed from the atmosphere each year. (Show your working.)
\qquad
(ii) Calculate the percentage of this total which is removed by the photosynthesis of land plants. (Show your working.)
\qquad \%
(iii) Calculate the net gain of carbon by the atmosphere in one year. (Show your working.)

Answer \qquad billion tonnes

Q29.

A gardener pulled up weeds and used them to start a compost heap. The compost heap soon became colonised by large numbers of earthworms and slugs. The gardener then noticed a hedgehog rooting through the compost heap, eating the earthworms and slugs. Every so often the hedgehog stopped to scratch itself. This was because it had large numbers of fleas which fed by sucking the hedgehog's blood.
(a) Use only information from the passage to answer the following.

Construct and label a pyramid of biomass for your food chain.
(b) Gardeners put plant material onto compost heaps so that it will decay. They then put the decayed compost onto soil where they are growing their plants.

Give three conditions which are needed for plant material to decay rapidly.

1. \qquad
2. \qquad
3. \qquad

Q30.
The drawing shows a section through a well-designed compost heap.

(a) Suggest why soil is put in with the dead plant material.
\qquad
\qquad
\qquad
(b) Explain why the compost heap is designed with holes in the sides.
\qquad
\qquad
\qquad

Q31.
An oak wood contained the following:
200 oak trees
150000 primary consumers
120000 secondary consumers
(a) Draw and label a pyramid of biomass for this wood. (Your pyramid does not have to be drawn to scale.)
(b) A scientist estimated the total amount of energy flow through each level of the pyramid per year.

The results were:
Energy absorbed by oak trees 4600000 kJ per m² per year
Energy in sugar produced by trees 44000 kJ per m² per year
Energy transferred to primary consumers 2920 kJ per m² per year
Energy transferred to secondary consumers 700 kJ per m² per year
(i) Calculate the percentage of the energy absorbed by the trees that is transferred to sugar by photosynthesis. Show your working.

Answer \qquad \%
(ii) Suggest two reasons why a large proportion of the energy is not transferred to sugar.

1. \qquad
\qquad
2. \qquad
\qquad
(iii) Give three reasons why some of the energy in the primary consumers is not passed on to the secondary consumers.
3. \qquad
4. \qquad
\qquad
5. \qquad
\qquad

Q32.
The table shows the results of a ten-year study of the owls and voles in a forest.

YEAR	NUMBER OF VOLES (TO THE NEAREST THOUSAND)	NUMBER OF OWLS
1	15000	8
2	12000	9
3	15000	7
4	23000	9
5	40000	14
6	2000	28
7	9000	8
8	19000	9
9	10000	14
10	8000	16

The data for years 1-7 have been plotted on the grid below.
(a) Complete the graph by plotting the data for years 8-10.

(b) (i) What is the main factor which limits the size of the owl population?
\qquad
(ii) Suggest two reasons other than owl predation, for the large fall in the numbers of voles between years 5 and 6 .

1. \qquad
\qquad
2. \qquad

Q33.

The diagram shows some of the stages by which materials are cycled in living organisms.

(a) In which of the stages, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} :
(i) are substances broken down by microbes;
(ii) is carbon dioxide made into sugar;
(iii) are plants eaten by animals?
\qquad
\qquad
(b) In an experiment, samples of soil were put into four beakers. A dead leaf was put onto the soil in each beaker. The soil was kept in the conditions shown.

W
Warm and wet

X
Cold and wet

Y
Warm and dry

Z
Warm and dry

In which beaker, $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ or \mathbf{Z}, would the dead leaf decay quickest? \qquad

Q34.
Read the passage.

Glutton up a gum tree

Along the banks of the Cygnet River on Kangaroo Island, the branches of the dying gum trees stretch out like accusing fingers. They have no leaves. Birds search in vain for nectarbearing flowers.

The scene, repeated mile upon mile, is an ecological nightmare. But, for once, the culprit is not human. Instead, it is one of the most appealing mammals on the planet - the koala. If the trees are to survive and provide a food source for the wildlife such as koalas that depend on them, more than 2000 koalas must die. If they are not removed the island's entire koala population will vanish.

Illegal killing has already started. Worried about soil erosion on the island, some farmers have gone for their guns. Why not catch 2000 koalas and take them to the mainland? "Almost impossible," says farmer Andrew Kelly. "Four rangers tried to catch some and in two days they got just six, and these fought, bit and scratched like fury."

Use the information from the passage and your own knowledge and understanding to give the arguments for and against killing koalas to reduce the koala population on Kangaroo Island.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q35.
Read the passage.

EXAM PAPERS PRACTICE

Glutton up a gum tree

Along the banks of the Cygnet River on Kangaroo Island, the branches of the dying gum trees stretch out like accusing fingers. They have no leaves. Birds search in vain for nectarbearing flowers.

The scene, repeated mile upon mile, is an ecological nightmare. But, for once, the culprit is not human. Instead, it is one of the most appealing mammals on the planet - the koala. If the trees are to survive and provide a food source for the wildlife such as koalas that depend on them, more than 2000 koalas must die. If they are not removed the island's entire koala population will vanish.

Illegal killing has already started. Worried about soil erosion on the island, some farmers have gone for their guns. Why not catch 2000 koalas and take them to the mainland? "Almost impossible," says farmer Andrew Kelly. "Four rangers tried to catch some and in two days they got just six, and these fought, bit and scratched like fury."

The diagram shows the flow of energy through a koala.
The numbers show units of energy.

(i) Calculate the percentage of the food intake which is converted into new tissues for growth. Show your working.
(ii) Give three different ways in which the koala uses the energy released in respiration.
1.
\qquad
2. \qquad
3. \qquad

Mark schemes

Q1.

(a) A higher concentration would be difficult to stir
(b) (i) methane
(ii) 60

100-(5 + 35) but incorrect answer allow 1 mark
(c) (i) aerobic respiration
(ii) oxygen

Q2.
(a) (i) without oxygen
ignore reference to air
(ii) otherwise difficult to stir / to pump / to transfer allow prevent 'clogging' owtte
(iii) need to stir / pump / heat
(b) (i) rises then falls
then levels / slight rise
quantitative descriptor eg to 80% / max. on day 4 / min. on day 16
accept other valid quantitative descriptor
allow accuracy $\pm \frac{1}{2}$ small square
(ii) 16 (15.5 to 16.4)
(c) oxygen present
$\left(\mathrm{CO}_{2}\right.$ produced) by aerobic respiration
or not much anaerobic respiration
or not much methane / CH_{4} produced

Q3.
(a) the sun / light / sunshine / solar
allow radiation from the sun ignore photosynthesis / respiration
apply list principle
do not allow water / minerals / heat
(b) $2.5(: 1)$
correct answer with or without working ignore rounding with correct working
do not allow other equivalent ratios for both marks evidence of selection of 10(insects) and 4(frogs) or 50 and 20 or 1 and 0.4 for 1 mark
if no other working allow 1 mark for 0.4:(1) on answer line
(c) any two from:
allow for insects or frogs
allow energy for biomass

- some parts indigestible / faeces
- waste / examples of waste eg urea / nitrogenous compounds / urine / excretion
- movement / eg of movement
allow keeping warm
- heat
- not all eaten / eg of not all eaten
- respiration
do not accept energy for respiration
(d) any four from:
- (bodies) consumed by animals / named / scavengers / detritus feeders
- microorganisms / bacteria / fungi / decomposers
- reference to enzymes
- decay / breakdown / decompose / rot
ignore digest(ion)
- respiration
- carbon dioxide produced
- photosynthesis
- sugar / glucose produced
accept other organic molecules
- fossilisation / fossil fuels / named
- combustion / burning
must be linked with fossilisation / fossil fuels
- (burning) produces carbon dioxide
allow carbon dioxide produced once only

Q4.
(a) carbon dioxide and water vapour either order
(b) less methane
because less anaerobic respiration
more CO_{2}
ignore water
because (more) aerobic respiration

Q5.
(a) (i) increase / higher / faster / quicker
numerical comparison eg from 30 to 60 / by 30 or it is 30 at
$15^{\circ} \mathrm{C}$ and 60 at $25^{\circ} \mathrm{C}$
award 2 marks for doubles / goes twice as fast or 30 units more
(ii) any two from:

- oxygen / air (in)
do not accept lets oxygen / air out ignore reference to other substances / light passing in or out ignore microorganisms passing in
- for microorganisms / bacteria / microbes / fungi /
decomposers
ignore worms / germs / bugs
- (for aerobic) respiration
- let heat out
ignore heat in
- heat kills microorganisms
(b) compost contains minerals / nutrients / elements / ions / named
allow improve moisture / drainage allow nitrogen ignore CO_{2} / food / goodness / fertilisers do not accept vitamins / glucose etc

Q6.
(a) methane
accept $\mathrm{CH}_{4} / \mathrm{CH} 4 / \mathrm{CH}^{4}$ extras cancel
(b) anaerobic respiration or fermentation
ignore decay / decomposition / digestion
do not allow aerobic
(c) (i) in range $32-33$
(ii) keep cool(er)
or keep below $40\left({ }^{\circ} \mathrm{C}\right)$
or insulate from heat
allow keep at optimum temperature if (c)(i) < 40
high(er) / optimum rate of biogas production or rate decreases at higher temperatures or works more efficiently
allow correct reference to rate of enzyme action eg high temperature would denature enzyme owtte
(d) increases rate / high rate
allow 'works better'

insulates / keeps warm allow maintains optimum temperature

Q7.
(a) (i) D
(ii) \mathbf{A}
(b) (i) air / oxygen (can enter)
ignore other factors entering or leaving
for (aerobic) respiration
do not accept anaerobic respiration
(ii) (more) minerals / nutrients /salt(s) / ions
or
named mineral / element available ignore fertility / fertiliser allow symbols allow eg mulching / reducing weeds or retain water

Q8.
(a) (i) methane
apply list principle allow symbols
(ii) anaerobic respiration / (anaerobic) fermentation ignore decay / decomposition etc
(b) (i) any two from:

- manure disposed of
- gains fertiliser (for crops)
- gets (free) fuel or cheap supply of energy or (free) cooking / heating / lighting
allow converse
allow not using wood / trees
- can sell crops at higher price
(ii) in the UK
allow converse arguments for Sri Lanka
lower temperature

or

not enough heat
ignore other factor(s)
process is slower
or
enzymes action slower ignore references to efficiency / 'bacteria working'

Q9.
(a) microorganisms / bacteria / fungi / microbes
allow named example or mould ignore decomposers unqualified / germs / maggots / worms
(b) it is warm(er) / hot / increased heat / increased temperature ignore 'sun is hot' unqualified
(c) oxygen

Q10.
(a) 30
award both marks for correct answer, irrespective of working 100-(33+27+10) or equivalent for 1 mark
(b) 2 or 1.98
award both marks for correct answer, irrespective of working (33 / 100) $\times 6$ or equivalent for 1 mark
(c) respiration
(d) (i) less / no heat loss / movement do not accept 'energy' / warmth unqualified

$$
7
$$

(ii) any reference to cruelty eg stress to calf / cramped conditions
ignore references to disease / hygiene

Q11.

(a) methane
(b) (insulation maintains) higher temperature / warm(er) / keeps heat in / prevents heat loss / optimum temperature / heat increases rate of reaction
do not allow hot(ter) / high temperature ignore same / constant temperature
(c) (i) (\$)25 000
ignore units
ignore working or lack of working
add 3 figures and subtract 10000
or
use of 35000 and 10000 but wrong answer for 1 mark
(c) (ii) 8 years $=\mathbf{2}$ marks
ignore working or lack of working
or
correct answer from (c)(i) = $\mathbf{2}$ marks
$\frac{200000}{(c)(i)}$ but wrong answer $=\mathbf{1}$ mark

Q12.
(a) (i) 20
(ii) 12000
(b) area of strips
or
length / width / size of transect
or
number of transects
(c) (i) since squirrels mobile
or
squirrels could be counted twice
or
squirrels hide
(ii) any two from:

- numbers of larders observed likely to be lower than actual do not accept squirrels share larders or squirrels have more than one larder
- \quad since unlikely that all could be spotted if 5 m away
- old larder
- squirrels moved on / died
- young squirrels
- haven't made a larder
(d) (i) 0 to 6.8
(ii) any one from:
do not accept squirrels prefer blue spruce
- squirrels prefer blue spruce cones / seeds / nuts as food
- more cones / food
- more nesting sites
- fewer predators / competitors

Q13.

(a) any two from:
control variables from information given

- area of bed sampled
- sampling time
- size of net
- kicking action
- net position
(b) any two from:
must be ideas related to a sample
- some animals not dislodged
ignore reliability etc
- some animals missed / through / escaped net
- invertebrates difficult to identify
- invertebrates from outside area
(d) any two from:
- increased / goes up
allow increase implied from all data described
- 0 at sample 4
- to (more than) 100
(e) mayfly
because not found downstream of point where sewage enters stream or only in the unpolluted water

Q14.
(a) points plotted accurately
$+\frac{l}{2}$ square
deduct 1 mark per error
ignore the line
(b) 30 or correct from candidate's graph
accept 30000 lynx
do not accept 30000
(c) (i) fall
mark (i) and (ii) separately
(ii) fewer hares or lack of food
do not accept no hares or food
(d) kills / preys / preys on / hunts / catches
and eats / for food (other) animals
must have the eat and kill for the point

Q15.

(a) 0.1

$$
\begin{aligned}
& \text { ignore working or lack of working } \\
& \frac{88 \times 100}{88000} \text { for } 1 \text { mark }
\end{aligned}
$$

(b) shape: pyramid with 4 tiers

labels:
Plants + Herbivores + Carnivores + Top carnivores
(in sequence - largest to smallest)
allow suitable named examples
inverted pyramid correctly labelled = $\mathbf{1}$ mark
(c) more energy / biomass / materials / matter available or less energy lost or energy used up (by herbivores)
not just plants

Q16.
(a) any three from:

1960: $\frac{132}{186} \times 100$
71(\%)

1970: $\frac{161}{247} \times 100$

65(\%)
if both correct - 3 marks
if one correct - 2 marks
if neither correct - check working - 1 mark each
(b) advantages (maximum 3 marks)
reduced use of coal / oil / non renewable / fossil fuels
less smoke / sulphur dioxide
ignore pollution
cheaper in long term / over 8+ years / few years
(energy) self-sufficiency idea
fertiliser to help crop growth
accept less fertiliser bought
means of waste disposal
accept any other appropriate responses
disadvantages (maximum 3 marks)
high initial cost
explosion risk
technical or training required
accept any other appropriate responses
$\max 4$
(c) (i) suitable scales;

S

1
suitable curve or ruled dot-to-dot or straight line of best fit L
do not accept lines through origin line must not be thicker than half square
(ii) insulation / less temperature variation / maintain temperature do not accept 'kept cool' or 'warm'
less chance of microbes being killed / enzymes denatured or keep at optimum temperature or maintain high gas production

Q17.
(a) In sequence:
heron
frog
slug
lettuce
(b) (i) light / sun
ignore photosynthesis / respiration cancel mark if water / ions etc given do not accept heat
(ii) traps / absorbs light accept energy for light do not accept collects / attracts do not accept 'traps sun'
(iii) 162
if correct answer, ignore working / lack of working $\frac{10 \times 1620}{100}$ for 1 mark

Q18.
(a) X (no mark)
\mathbf{X} is more visible or \mathbf{Y} is more camouflaged
(b) (i) so camouflage not changed or so not easier to see
(ii) 25

7
(iii) any one from:

- eaten (by birds) / died
- mixed in with large number of unmarked moths
- moved away
(c) (i) DNA
(ii) the gene / allele for being dark / dominant

Q19.

(a) Quality of written communication: ideas given in a sensible order
broken down
giving products (could be CO_{2}, minerals or gas)
(used by trees)
$Q \mathbf{v}^{\prime}$ or $Q \mathbf{x}$
any three from:

- microorganisms / bacteria / fungi / saprotrophs
- accept saprophytes / saprobionts / detritivores (named)
- digest / break down organic matter / leaves / decompose / reference decomposers / decay / rot
- use of enzymes / correct named example
- absorption by diffusion / active transport
- must be of breakdown products
- respiration / combustion
- release of carbon dioxide
CO_{2} can be used (by trees) in photosynthesis do not accept CO_{2} taken in by roots
(b) any two from:
- warmth / suitable temperature
do not accept heat / hot weather
- damp / water / rain / humid / moisture
- oxygen
- suitable pH

Q20.
(a) (i) (predator) lion
(ii) light accept other positive indications
(iii) in sequence (top to bottom):
lion
antelope
grass
(b) (i) bacteria / fungi / saprotrophs accept moulds / decomposers / microorganisms / microbes / saprophytes / saprobionts
(ii) aerobic
moist
warm
accept other positive indications1
(iii) carbon dioxide
mineral salts

Q21.
(a) $1.67 / 1^{\frac{2}{3}}$
accept 1.6 to 1.7
ignore working or lack of working $\frac{400 \times 100}{24000}$ for 1 mark
(b) any three from:
deduct only 1 mark for any mention of in carnivore
lost as heat or keeping body warm
lost in metabolic functions is not enough
lost in respiration
do not accept 'used for respiration
movement
not eaten parts or individuals / non-edible parts / dead leaves / wood /
bones / faeces / urine
ignore 'waste'
ignore references to growth / reproduction

Q22.
(a) $\mathbf{1}$ mark for each
respiration
decay
(b) (i) digests or breaks down or decays dead (organic) material
accept rots for digests
accept plants for dead organic material
do not accept 'live on' or 'decompose'
(ii) bacteria or worms or maggots
accept microbes but not germs or viruses

Q23.
(a) (i) squirrels eat nuts;
each for 1 mark
owls eat squirrels
(2 marks for energy flow)
(ii) hazel tree
gains 1 mark
(iii) 1 squirrel population would decrease; because fewer nuts available as food
each for 1 mark

2 owl population would decrease;
because fewer squirrels available as food
each for 1 mark
(b) (i) digested/broken down;
(ii) by microbes/reference to worm action;
each for 1 mark
(iii) March
warmer/increased activity of worms/microbes;
each for 1 mark

Q24.
(a) (i) vole/small bird/beetle gains 1 mark
(ii) oak trees are large organisms;
therefore their biomass is large; but their numbers are small each for 1 mark
(b) 8 of:
energy stored in chemicals in cells/tissues/growth; passed up food chain;
less energy stored at each stage in food chain/pyramid level; because only part of energy taken in used for growth; some lost in waste; some used for repair; used to main body systems; some lost in respiration; some converted into other forms of energy; e.g. movement; much lost as heat; by time detritus feeders have used remains; all returned to environment
each for 1 mark
c1 \rightarrow animals
c2 \rightarrow decomposers
2 marks for sequencing and organising the information

Q25.
(a) e.g.: competition for light because potamogeton plants taller competition for nutrients taller plants may have longer roots each for 1 mark
(b) descriptions of:
measuring tape or similar quadrat method of estimating cover (inside quadrat)
each for 1 mark

Q26.
(a) water
gains 1 mark
oxygen
gains 1 mark
(b) e.g.:
some materials/energy lost in animals' waste materials
respiration releases energy
some materials/energy used in maintenance/repair
some energy used for movement
much lost as heat to surroundings
some organisms die (rather than eaten)
reference to detritivors
reference to microbes
each for 1 mark

Q27.
(a) (i) e.g.mussels/caddis loach
for 1 mark
(ii) 3 of:
carbon dioxide water chlorophyll/chloroplasts light
any 3 for 1 mark each
(b) 6 of e.g.
some plant/animal material not digested by consumers passes out with faeces respiration releases energy used in movement lost as heat some 'lower' organisms die energy transferred to decomposers/detritivores
thence to environment any 6 for 1 mark each

Q28.
(a) glucose/sugar water for 1 mark each
(b) (i) 204
for 1 mark
(ii) 49 gains 2 marks
(incorrect answer, but correct method gains 1)
(iii) 3 gains 2 marks
(incorrect answer, but correct method gains 1)

Q29.
(a) pyramid correct shape labelled
(b) warm
moist
oxygen

Q30.
(a) soil contains the microbes which will decay the dead material for 1 mark each
(b) lets in air/oxygen oxygen speeds up decay process for 1 mark each

Q31.
(a) levels in correct order
sizes correct
for 1 mark each
(b) (i) working
0.96\% (correct answer = 2)
for 1 mark each
(ii) 2 of e.g. heat up leaves absorbed by non-photosynthetic parts transmitted through leaves
any 2 for 1 mark each
(iii) 3 of e.g.
respiration of primary consumers movement of p.c.
waste from p.c.
repair/growth of p.c.; heat losses to surroundings
any 3 for 1 mark each

Q32.
(a) 1 mark for each correct set of plots for 1 mark each
(b) (i) number of voles/amount of food
for 1 mark
(ii) e.g. increased number of owls new disease
for 1 mark each

Q33.
(a) (i) D
(ii) A
(iii) B for 1 mark each
(b) W

Q34.
pros e.g.:
gum trees survive therefore less soil erosion therefore food webs not disrupted if no culling, whole Koala population may die easier to cull because Koalas are difficult to catch
cons e.g.:
Koala's 'right to life' / ethical issue
better to transfer to reserves on mainland than kill could use tranquillisers to catch without killing could allow population to stabilise naturally
max 4 of the above; max 3 pros or cons.

Q35.
(i) $0.25 \times 100 / 25$
gains 1 mark

but
 1\%

gains 2 marks
(ii) muscle contraction / limb movement / moving around / chewing heartbeat / breathing / internal muscle activity maintaining body temperature / keeps body warm active uptake synthesising substances (reject growth)
any three for 1 mark each

Q1.

Compost heaps are used to recycle waste plant materials.

Complete the sentences by choosing the correct words from the box.

EXAM PAPERS PRACTICE

cool		decay		dry	
	moist		respire		warm

The waste plant materials \qquad because they are broken down by microorganisms.

The waste plant materials are broken down faster when the conditions are \qquad and \qquad .

This process releases substances that can be used by other plants to \qquad .
(Total 4 marks)

Q2.
Greenfly feed on rose bushes. Ladybirds (predators) feed on these greenfly. The graph shows how the population of greenfly and ladybirds in a garden change over a period of three years.

(a) To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Describe what happened to the population of greenfly over the three years.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give one factor that limits the number of ladybirds.
\qquad
\qquad

Q3.
In a sewage works, human waste is broken down by microorganisms.
Air is blown through this sewage.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Carbon dioxide is formed from the mixture of sewage, microorganisms and air. Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.
A food chain has four organisms, A, B, C and D.

$$
\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{D}
$$

The table shows the amount of energy transferred by each organism in one year.

Organism	Energy transferred in kJ per year
A	87000
B	14000
C	1600
D	70

Explain, as fully as you can, why organism \mathbf{D} would transfer much less energy than organism A.
\qquad
(Total 5 marks)

Q5.
Energy is stored in the materials that make up organisms. These materials are called biomass.

Organisms in food chain	Rose plant	\rightarrow	Greenfly	\rightarrow	Ladybird	\rightarrow	Blackbird
Biomass in $\mathbf{g} / \mathbf{m}^{2}$	600		50		10		1

(a) Complete the pyramid of biomass for this food chain. The rose plant has been done for you. You should draw the rest of the pyramid to the same scale.
(5 small squares $=50 \mathrm{~g} / \mathrm{m}^{2}$. .)

Biomass in $\mathrm{g} / \mathrm{m}^{2}$
(b) What proportion of the energy in a rose plant is transferred to greenfly?
\qquad
\qquad
\qquad
Proportion = \qquad
(Total 5 marks)

Q6.
Chickens are kept as farm animals to produce food. Free-range chickens are allowed to feed in a large space outside. The diagram shows how energy supplied in food to a freerange chicken is transferred.

(a) Calculate the amount of energy "lost" in faeces.
\qquad
\qquad
Energy "lost" = \qquad kJ
(b) Some farmers use the battery method. They keep large numbers of chickens in a small indoor space. The food yield from these chickens is higher than that from freerange chickens. Explain why, as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7.
The graphs give information, from a hundred years ago, about the size of the population of snowshoe hares and lynx, which live in northern Canada. Snowshoe hares are herbivores. Lynx are carnivores and prey on snowshoe hares.

(a) Give three factors which can affect the size of the snowshoe hare population.

1. \qquad
2. \qquad
3. \qquad
(b) The graph for numbers of lynx shows a similar cycle to that of the snowshoe hares. The peaks for lynx usually occur about a year later than the peaks for the snowshoe hares. Suggest why.
\qquad
\qquad
\qquad
\qquad

Q8.
(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

(iii) What sort of weather may cause the cereal crop to wilt?
(b) Describe the process of transpiration in plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q9.
(a) Use words from the box to complete the sentences about the water cycle.

| boils condenses | evaporates | | freezes |
| :---: | :---: | :---: | :---: | :---: |
| melts \quad rain | sea \quad Sun | wind | |

Water \qquad from the surface of the \qquad . Heat from the
\qquad speeds up this process and so does the \qquad .

Water vapour in the atmosphere cools down and \qquad to form billions of tiny water droplets. Some of the droplets join together and fall as \qquad .
(b) The diagram shows some processes in the carbon cycle.

EXAM PAPERS PRACTICE

(i) What is the name of substance \mathbf{X} ?
\qquad
(ii) Which process, A, B, C, D or E, takes the longest and approximately how long does it take?
\qquad

Q10.
A food chain in the North Atlantic Ocean is:

$$
\text { diatoms } \rightarrow \text { small fish } \rightarrow \text { large fish }
$$

The graphs show how over a year:

- the population size of diatoms in the North Atlantic varies;
- the light intensity alters;
- the concentration of nitrate and phosphate minerals alters.

(a) Explain why the light intensity is a major factor in controlling the numbers of diatoms.
\qquad
\qquad
\qquad
(b) (i) Suggest two reasons why the population of diatoms decreases between spring and summer.

1. \qquad
\qquad
2. \qquad
\qquad
(ii) Give two reasons why the population of diatoms decreases in autumn.
3. \qquad
\qquad
4. \qquad
\qquad
(c) Use the information on the graph to suggest what change causes the number of diatoms to increase in the late summer. Give a reason for the change.
\qquad
\qquad

Q11.

(a) A gardener was told to let more air into his heap of garden waste.

Explain why this would help decay.
\qquad
\qquad
(b) Write down two further conditions which speed up the decay of garden waste in a compost heap.

1. \qquad
2. \qquad

Q12.

The greenfly is an insect which is eaten by ladybirds.

Greenfly
(a) (i) What do we call animals, like the ladybird, which hunt and kill other animals for food?
\qquad
(ii) What do we call animals, like the greenfly, which are eaten by other animals?
\qquad
(b) What would happen to the number of ladybirds if the numbers of greenfly
suddenly dropped?
\qquad

Give a reason for your answer.
\qquad
\qquad
(c) Suggest two factors, other than the number of ladybirds, which could affect the number of greenfly.

1. \qquad
2. \qquad

Q13.
Mushrooms can be grown on compost. The compost is made by mixing straw and manure which rot down.

(a) Write down three things which are needed for the straw and manure to rot.

1. \qquad
2. \qquad
3. \qquad
(b) Some substances, like plastic, are not biodegradable.

What does this mean?
\qquad
\qquad

Q14.
In some developing countries woodland is cut down and burned. The ash acts as fertiliser. Crops are grown for three years. The land is then left as it is too poor to grow any more crops.

(a) In the original woodland trees and plants died and grew for hundreds of years. When cleared the land grew crops for only three years. Explain this difference in as much detail as you can.
\qquad
\qquad
\qquad
\qquad
(b) What could farmers do to make crops grow on the cleared land for more than three years?
\qquad
\qquad

Q15.
(a) $1 \mathrm{~m}^{2}$ of a field gets about 1050 MJ of light energy per year.

Only 21500 kJ of energy is stored in the new grass.
(i) How is the energy stored in the new grass?
\qquad
(ii) What is the \% of light energy stored in the grass?
\qquad
\qquad
\qquad
(b)

The diagram shows what happens to the energy from grass in part of a field which is grazed by a bullock.

Using information in the diagram suggest why food chains are usually short.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Many of the animals which from part of our diet are herbivores rather than carnivores. Explain why as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A farmer had too much manure to spread on his fields. He thought he would turn it into compost which had no smell.
(a) What makes the manure decay?
\qquad
(b) Write down two conditions which will help the manure to decay faster.

1. \qquad
2. \qquad

Q17.

The diagram shows how the gas from decaying plant and animal waste can be collected.
(a) (i) Name the gas collected from the decaying waste.
\qquad
(ii) What can the gas be used for?
\qquad
(b) The decayed waste produces compost.

What can the compost be used for?
\qquad

Q18.

Some small mites feed on the leaves of orange plants. Larger mites feed on the smaller mites.
(a) What do we call animals, like the large mite, which eat other animals, like the small mite?
\qquad

The graph shows how the number of these mites changes over a period of time.
(b) (i) What happens to the number of large mites one week after the number of small mites decreases?

Suggest a reason for this.
\qquad
\qquad
\qquad
(ii) What happens to the number of small mites as the number of large mites increases?

Suggest a reason for this.
\qquad
\qquad
\qquad

Q19.

Earthworms are important soil organisms. When they burrow, they help to bring air into the soil as well as improving drainage. Earthworms also bury leaves in the soil. These decay making the soil more fertile. Earthworms in turn are eaten by voles, moles, foxes, badgers and birds.

New Zealand flatworm

In some parts of the United Kingdom, earthworms are being killed by New Zealand flatworms. The animals are spreading quickly and have no natural enemies.

The flatworms do not make their own burrows. They only use the burrows made by the earthworms in order to attack them.
(a) Explain, as fully as you can, why it is important to control or get rid of these New Zealand flatworms in Britain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Suggest one possible way, giving one advantage and one disadvantage, that this New Zealand flatworm could be controlled.
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.
Food decays more slowly if it is kept dry or cool.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q21.
Whitefly are pests and harm plants in glasshouses. A small wasp can be used to control the whitefly.

The wasp can only lay its eggs in the larvae of whiteflies.
The wasp larva eats the body of the whitefly larva.
It then changes into a new wasp and flies off.
(a) Choose words from the list to complete the sentences below.
decomposer predator prey producer
The wasp larva feeds on the whitefly larva.
The wasp is a \qquad
The whitefly is known as the wasp's \qquad
(b) The graph shows how the numbers of whitefly and wasps change over several months.

What happens to the number of wasps between 15 and 20 months?
\qquad
Why do you think this happens? \qquad
\qquad
\qquad
\qquad
(c) What would happen to the wasps if there were no larvae in which to lay their eggs?

Q22.

The elephant is likely to become extinct in parts of Africa.
Use the information below to explain three reasons why.

* The African elephant eats lots of trees and other plants for food.
* In Africa the human population is increasing and more food is needed to feed the extra people.
* More trees are cut down for fuel and to clear land for growing crops.
* Elephants are killed by poachers who want the ivory from their tusks.
* A herd of elephants needs a large area in which to live and feed.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
(Total 3 marks)

Q23.
Scientists have found the following food web in the Antarctic Ocean.

(a) (i) Write down the name of the producer in this web.
(ii) Write down the names of two organisms which are prey in this web.
\qquad
\qquad
(b) Humans are removing large numbers of the cod.

Some scientists argue that this could lead to a decrease in the numbers of squid and penguins.
Others argue that the numbers of squid and penguins will stay the same.
Carefully explain each argument.
Why they might decrease.
\qquad
\qquad
\qquad
Why they might stay the same.
\qquad
\qquad
\qquad
(c) The following information is about the biomass of the organisms in one of the food chains in the web.

Draw and label a pyramid of biomass for this chain.

Q24.
The diagram shows part of the carbon cycle.

(a) Write down the name given to process A.
\qquad
(b) Explain, as fully as you can, how some of the carbon in the grass becomes part of the fox's body.
\qquad
\qquad
\qquad
\qquad
\qquad

Q25.
Scientists have found the following food web in the cold Antarctic Ocean.

(a) Humans are removing large numbers of the cod.

Some scientists argue that this could lead to a decrease in the numbers of squid and penguins.

Others argue that the numbers of squid and penguins will stay the same.
Carefully explain each argument.
Why they might decrease.
\qquad
\qquad
\qquad

Why they might stay the same.
\qquad
\qquad
\qquad
(b) The following information is about the biomass of the organisms in one of the food chains in the web.

Draw and label a pyramid of biomass for this chain.
(c) Explain, as fully as you can, why the conversion of shrimp biomass into cod biomass is more efficient than that of cod biomass into seal biomass in the cold Antarctic Ocean.
\qquad
\qquad
(d) Boats from many countries fish the Antarctic Ocean. The cod are being overfished. If the numbers of cod are to increase, the population must be carefully managed.
(i) Suggest two control measures which would prevent a further drop in numbers,
\qquad
\qquad
(ii) Suggest why one of your control measures would be difficult to put into practice.
\qquad
\qquad
(Total 11 marks)

Q26.
When animals die, bacteria make them decay.
Warmth, moisture and oxygen are needed for this to happen.
(a) (i) In northern Russia whole bodies of mammoths have been found in the frozen soils.

Explain why they did not decay.

\qquad
\qquad
(ii) Fish fossils have been found in mudstone rock. Explain why they did not decay?

EXAM PAPERS PRACTICE

\qquad
\qquad
(b) Some of the mammoths had flint weapons in their bodies.

Suggest two things that this tells us about human evolution.

1. \qquad
2. \qquad
(c) Mammoths are now extinct. Suggest two reasons for this.
3. \qquad
4. \qquad

Q27.
In compost heaps, dead plants are broken down by microbes.
This breakdown is much slower:

- when the weather is cold
- when the weather is dry
- when the heap is squashed down so that no air can circulate.
(a) What three conditions inside compost heaps are needed for microbes to work quickly?

1. \qquad
2. \qquad
3. \qquad
(b) Why is the breakdown of dead plants important for living plants?
\qquad
\qquad

Q28.
Copepods are tiny animals which live in the sea.

Copepods

Herring
(not to scale)
During the day they live deep down near the sea bed.
At night they move up to the surface where they feed on tiny plants.
When the sun rises they move down to the bottom again.
(a) Suggest why the tiny plants live near the surface of the sea.
\qquad
\qquad
(b) Herring feed on copepods.

Where will herring be found during the day? Give a reason for your answer.
\qquad
\qquad
\qquad

Q29.
Brown trout are fish that kill and eat other animals.
(a) Choose a word from this list to complete the sentence below.
competitors consumers prey producers

Trout are predators, the animals they eat are their \qquad .
(b) The graph shows the ages of the brown trout found in the river Tees.

There was no serious pollution in the river during this time.

Suggest three reasons why few brown trout live to be over two years old.

1. \qquad
2. \qquad
3. \qquad

Mark schemes

```
Q1.
decay
warm (*)
moist (*)
grow
(*) \(^{*}\) these words can be either order

Q2.
(a) Quality of Written Communication

The answer to this question requires ideas in good English, in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme.
max 2 if ideas not well expressed
in summer more greenfly
accept increase in population
in winter less greenfly
accept decrease in population
over the three years greenfly numbers decrease
accept fall or drop for decrease
(b) any one from
(number of) greenfly
severe or cold winters
toxic chemicals
destruction of habitats
disease
predators
weather
temperature
do not accept food

Q3.
Quality of written communication: One mark for using correct scientific terms microorganisms and respiration
(air contains) oxygen
(microorganisms break down human waste) by respiration (which releases carbon dioxide)

Q4.
any five from:
- the amount of energy (in the biomass of organisms) is reduced at each successive stage in a food chain
- all of prey organism is not consumed
- energy is 'lost' as the organisms' waste materials
- energy is transferred / lost during respiration
- energy is transferred / lost as movement (kinetic energy)
- energy is transferred / lost as heat (thermal energy)
- energy is transferred / lost to the surroundings
- the only energy transferred to a higher level is that which the organisms have used in growing
statements about energy flow the wrong way are neutral

Q5.
(a) all bars correct for greenfly, ladybird ( \(\pm\) one square) and blackbird (less than one square)
bars are centred
do not accept pyramid shape if all to left or right of centre
bars are labelled (in correct sequence)
(b) \(\frac{1}{12}\) or \(8.3 \%\) or \(1: 12\)
if answer is incorrect accept correct

\author{
working out (eg \(\frac{\frac{50}{600}}{}\) ) for 1 mark accept 12 or 12:1 for 1 mark accept 8.3 for 1 mark (without \%)
}

Q6.
(a) 115
(b) any four from
less energy lost / used
as heat lost to the atmosphere
since warm indoors
accept temperature controlled
(less energy lost) in movement
since movement restricted
more growth / eggs
accept prevents loss of body mass or gets fatter / weight gain

Q7.
(a) any three from
different factors are required for each mark
hares breeding
(amount) of food or plants available
eaten by lynx or predators or reference to size of lynx / predator population
hares dying or reference to being killed by humans
disease (spreads through the population)
(competition) for space or (lack of) space)
alternative to either of these points but not both change in environment or habitat
temperature or weather or climate
(b) any two from
more food or hares for lynx encourages more breeding (in lynx)
accept less food, less breeding
more food or hares allows greater survival rate of cubs or adult lynx
accept less food, less survival
idea of time lag for breeding or time lag for dying

Q8.
(a) (i) photosynthesis
(b) any three from
* evaporation (of water)
or loss of water vapour
* (mostly) from the leaf / leaves
do not credit incorrect reference to leaves
* through the stomata
accept through each stoma
accept through the stomas(sic)
* causing a pull
or causing an increase in osmotic potential (at the top of the plant)
or causing an increase in water potential (at the top of the plant) or causing a decrease in osmotic pressure (at the top of the plant)
* (so that) water moves up (through the plant)
do not credit water vapour moves up through the plant

\footnotetext{
* as the transpiration stream
* water enters through roots (and goes up plants)
}

Q9.
(a) evaporates
sea
sun
accept sun
wind
condenses
rain
(b) (i) carbon dioxide
accept \(\mathrm{CO}_{2}\) provided it is correct in every detail
(ii) (process) D
millions of years
a million years upwards

Q10.
(a) diatoms photosynthesise or are producers
the amount of growth depends upon the energy or light they get
accept more light means more growth
or they multiply more in more light
do not accept they need light
(b) (i) eaten by small fish
do not accept eaten by fish
minerals or nitrate or phosphates or nutrients or food supply used up or reduced
(ii) any two from
gets colder

> light decreases end of their life span or die accept more being eaten than being formed
> eaten by small fish do not accept a decrease in nitrates or phosphates
(c) increased minerals or nitrates or phosphates
any one from
due to death or decay of diatoms or fish
do not accept death of large fish
influx of minerals in an ocean current
do not accept extraneous pollution or dumping by a ship

Q11.
(a) more oxygen/microbes more active
(b) plenty of microbes moisture/not too wet warmth food for microbes
any 2 for 1 mark each

Q12.
(a) (i) predator (allow carnivore)
(ii) prey
each for 1 mark
(b) fewer ladybirds; because less food/ladybirds starve
or
no change; because alternative food supply
each for 1 mark
(c) any two suitable environmental effects e.g.
food;
diseases;
other predators;
space;
insecticides
any two for 1 mark each

Q13.
(a) warmth/heat
oxygen/air
moisture
microbes/micro-organisms/fungi/moulds/bacteria any three for 1 mark each
(b) do not rot
for 1 mark

Q14.
(a) idea:
wood goodness recycled/crops goodness removed
gains 1 mark

\section*{but}
wood minerals/nutrients recycled/crops remove nutrients/minerals
gains 2 marks
wood and crops compared
for 1 mark
(b) (add) fertiliser/nutrients/minerals (add) manure/animal waste/compost
any two for 1 mark each
(accept move to new area for 1 mark) rotation
max marks 2

Q15.
(a) (i) carbohydrate*/fat/protein in cell (or example e.g. glucose/starch)
for 1 mark
(ii) \(\underline{21500} \times 100\) or \(2 .(05) \%\) 1050000
for 1 mark
(b) ideas that:
little energy used for growth/most wasted/lost
gains 1 mark
but
only \(4 \%\) used for new growth
gains 2 marks
evidence/idea that this is repeated at each stage idea of diminishing return/less energy at each stage
for 1 mark each
(maximum of 3)
(c) idea:
plants at the start of all food chains
shorter food chain
more efficient/less energy lost/more food
cheaper/more economic
(must bear consequence of at least one of earlier marks)
any three for 1 mark each

Q16.
(a) microbes/worms/bacteria/fungi/moulds/
micro-organisms/decomposers
(not germs/bugs/slugs/organisms - ignore these)
any one for 1 mark
(b) idea warm/hot/heat (not sun)
oxygen/air
moist/water/wet/rain (not 'turn the compost' unless qualified)
If no answer given in (a), one e.g. could be credited in (b)
any two in any order for 1 mark each

\section*{Q17.}
(a) (i) methane/biogas/natural gas (accept formula) for 1 mark
(ii) cooking/heating/burning/fuel/vehicle fuel/lighting
for 1 mark
(b) idea that it is a soil improver/fertiliser/provides nutrients or makes soil richer or improves plant growth/makes plants grow better
(not "plants" alone/gardens/spreading on land)
for 1 mark

Q18.
(a) predator/carnivore
(not consumer/hunter)
for 1 mark
(b) (i) number decrease
not 'no' less food (for large mites)/less prey/fewer small mites to eat (not 'fewer small mites' etc)
starve/cannot grow/cannot breed/die/die out
each for 1 mark
(ii) increase small mites breeding faster (than they are eaten)
each for 1 mark
(accept different food found)
decrease = O maths but 1 mark for possible reason can be awarded more (small mites) eaten
each for 1 mark

Q19.
(a) idea:
soil wetter
soil less aerated
less food for moles/voles/foxes/badgers/birds
soil less fertile (less leaves in soil not enough on its own)
less food grown
earthworms die out/fewer earthworms
(not just "earthworms get eaten")
any 4 for 1 mark each
(b) method
advantage
disadvantage
e.g. *
- chemical
- kills worm/affects reproduction/maintains earthworm population
- persistent/food chain/kill earthworm
or
- import biological central/predator/disease/parasite
- kills worm/affects reproduction/maintains earthworm population
- may attack other animals/cause same sort of problems as New Zealand worms
(* credit other plausible suggestions for method/advantage/disadvantage) for 1 mark each

Q20.
idea that
microbes/bacteria/fungi/moulds/micro-organisms/decomposers.
NOT germs/worms/bugs/organisms
gains 1 mark
but microbes etc. need/grow/cause decay/decompose in gains 2 marks
but microbes etc. need/grow/caused decay/decompose
faster in warm/moist conditions
gains 3 marks
(Allow reverse arguments)

Q21.
(a) predator prey
no alternatives
for 1 mark each
(b) idea that
(wasps) increase OR decrease
gains 1 mark

\section*{but}
(wasps) increase then decrease/peaks at
gains 2 marks
answers must match
idea of change in food supply/whiteflies
more food/whiteflies OR less food/ whiteflies
gains 1 mark

\section*{but}
more food/whiteflies then less food/whiteflies
gains 2 marks
or
wasps follow trend in whiteflies
for 2 marks
or
linked to increase/decrease other environmental effects
e.g. more/less food for wasps, use of insecticide
e.g. temperature change, other predator

If increase/decrease not given then second part (reason) gains no marks for 1 mark each
(c) idea that
wasps die out/die off/fly away/migrate/leave greenhouse but NOT ‘die’ alone for 1 mark

Q22.
Factor and effect needed.
idea
- killed by poachers (for tusks/ivory)
- not enough food for elephants because humans cut down trees
- not enough space because more used by people/agriculture
- food/space destroyed by humans
- killed for food
any three for 1 mark each

Q23.
(a) (i) (tiny green) plants / phytoplankton for 1 mark
(ii) • penguin
- shrimp
- cod
- squid
any two for 1 mark
(b) Decrease: seals will eat more squid and penguins for 1 mark

\section*{Stay the same:}
- more shrimp for squid and penguins
- squid and penguins increase balances the extra eaten by seals
- seals find other prey [allow shrimps] any two for 1 mark each
(c)

seal
cod
shrimp
credit \(\qquad\) for seal
allow

- correct / shape (designs need to be to scale)
- correctly labelled with organisms
(if wholly correct but inverted then credit 1 mark)
each for 1 mark

plants
shrimp
cod
seal

Q24.
(a) photosynthesis
for 1 mark
(b) • grass eaten by rabbit
- rabbit eaten by fox
- carbon becomes part of fats/proteins in the fox's body
- or passes along the chain as (carbohydrate) / fat / protein
```

each for }1\mathrm{ mark
[Do not accept 'carbon gets into fox's body', for third mark]

```

Q25.
(a) Decrease: seals will eat more squid and penguins for 1 mark

Stay the same:
- more shrimp/food for squid and penguins
ideas that
- increase in squid and penguins balances the extra eaten by seals
- \(\quad\) seals find other prey (allow start to eat shrimps)
any two for one mark each
(b)
 seal
cod
shrimp credit
plants
allow

- correct shape (doesn't need to be to scale)
- correctly with organisms
(if wholly correct but inverted then credit 1 mark)
each for 1 mark
(c) - seals are mammals
- idea that seals have (to maintain) a constant body temperature [allow warm blooded]
- heat losses to cold seas
- more of food eaten used to replace heat loss
(credit use of figures i.e. 95\% loss compared to 90\%
or 5\% efficient compared to 10\%
or \(20: 1\) conversion ratio compared to \(10: 1\) with 1 mark)
any three for 1 mark each
(d) (i) ideas that
- reduce number of fishing boats allowed
- breed in captivity and then release
- agree quotas [not an unqualified 'ban']
- avoid breeding areas
- avoid breeding seasons
- increase size of net mesh/don't catch small fish
- limit catches of shrimps
- cull seals
any two for 1 mark each
[allow any other reasonable answer]
(ii) - breeding areas closer to some countries than others
- difficult to police/easy to cheat/'poach'
- difficult to agree quotas
- some countries eat more fish than others
- best weather for fishing maybe in breeding seasons
- fisherman/trawlers need employment
- big demand for cod
any one for 1 mark
[allow any other sensible response]

Q26.
(a) (i) (too) cold / all moisture / water frozen / no moisture / no warmth / conditions for decay are absent.
for 1 mark
(No oxygen is neutral)
(Do not accept frozen or ice has preserved them)
(ii) - (bacteria have) no oxygen / air (because dead fish covered in mud)
(No moisture x)
(No moisture and no oxygen or warmth x )
- bones / hard parts do not decay easily
idea that
- material of fish replaced by minerals any two for 1 mark each
(b) ideas that
- mammoths lived at the same time as humans / there was man in these times
- mammoths lived in the same place as humans
- humans hunted mammoths / ate mammoths / were carnivorous / for fur etc
- reference to later use of more advanced weapons
- humans needed to protect themselves from mammoths
- humans used flints / weapons / tools any two for 1 mark each
(c) idea that
- environment changed / became too cold / became too warm / vegetation changed / humans destroyed environment
- (new) predator / humans killed them
- new disease
- new competitor / type of elephant
- shortage of food / no food / ran out of prey
- mammoths reproduced too slowly
- mammoths didn't adapt to changes
any two for 1 mark each

Q27.
(a) • warmth / heat / hot / not cold if refer to weather or
- moisture / water conditions outside the compost heap, do not allow
- air / oxygen (allow idea that not squashed down)
in any order for 1 mark each
(b) idea that nutrients / minerals / nitrates are recycled / fertilise the soil (do not allow food / goodness) for 1 mark

\section*{Q28.}
(a) idea that
- light doesn't reach deeper parts
- plants need / absorb light
- to make food
gain 1 mark each to maximum of 2
but
so they can photosynthesise
gains 2 marks
(b) herring will be on the bottom
herring follow / will be feeding independent marking points on the copepods
for 1 mark each

Q29.
(a) prey
for 1 mark
(b) • disease
- eaten (by predators) / predators
- (over)fished / caught by fishermen
- competition for food / not enough food (for all the baby fish) / no food (do not allow they migrate or move elsewhere)
any three for 1 mark each```

