

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Organelles & Compartmentalisation

IB Biology - Revision Notes

www.exampaperspractice.co.uk

Cell Organelles

Cell Organelles

Compartmentalised cell structure

- Eukaryotic cells have a more **complex ultrastructure** than prokaryotic cells
- The cytoplasm of eukaryotic cells is divided up into membrane-bound compartments called organelles. These compartments are either bound by a single or double membrane
- Due to the absence of a membrane the following structures are **not considered organelles**
 - Cell wall
 - Cytoskeleton
 - Cytoplasm
- Eukaryotic cells have a number of **compartmentalised organelles** including:
 - The nucleus
 - Vesicles
 - Ribosomes
 - The plasma membrane
- The compartmentalisation of the cell is advantageous as it allows:
 - Enzymes and substrates to be localised and therefore available at higher concentrations
 - Damaging substances to be kept separated, e.g. digestive enzymes are stored in lysosomes so they do not digest the cell
 - Optimal conditions to be maintained for certain processes e.g. optimal pH for digestive enzymes
 - The numbers and location of organelles to be altered depending on requirements of the cell

Eukaryotic Animal Cell Structure Diagram

Copyright © 2024 Exam Papers Practice

© 2024 The ultrastructure of an animal cell shows a densely packed cell of compartmentalised organelles

Eukaryotic Plant Cell Structure Diagram

Plant cells have a larger, more regular structure in comparison to animal cells which also contains compartmentalised organelles

Organelle Adaptations

- In complex cells organelles can become specialised for specific functions
- These specialised organelles have **specific adaptations** to help them carry out their functions
- For example, the **structure of a organelle** is adapted to help it carry out its **function** (this is why each organelle looks very **different** from each other)

• The separation of organelles from the rest of the cell, via a membrane (sometimes double), is important as it allows the organelle to carry out its own chemical reactions without interference from the rest of the cell

NOS: Students should recognise that progress in science often follows development of new techniques

- Study of the function of individual organelles has become possible following the invention of **ultracentrifuges** and methods of using them for **cell fractionation** had been developed
 - In order to study cells at a molecular level we need to be able to separate out each compartment and study them individually in a process called cell fractionation
 - To do this a **pure sample** is needed (containing only the specific organelle being studied)
 - This process involves breaking up a suitable sample of tissue and then centrifuging the mixture at different speeds
 - Cell fractionation can be split into three stages:
 - Homogenisation the cell sample is broken up using a homogeniser which is a blenderlike machine
 - Filtration the homogenate (containing the homogenised cells) is then filtered through a gauze
 - Ultracentrifugation the filtrate is placed into a tube and the tube is placed in a centrifuge
 - A centrifuge is a machine that separates materials by **spinning**
 - This speed can be altered to separate different components of the cell based on their molecular weight
 - Until this was invented, research into separate organelles was limited

Cell Compartmentalisation

Separating The Nucleus & Cytoplasm

Copyright

- © 2024 The **nucleus** is one of the key organelles that distinguishes eukaryotic cells from prokaryotic cells
 - It allows many cell processes to take place more efficiently than in prokaryotes
 - Gene transcription and translation are two process that occur in both eukaryotes and prokaryotes
 - In prokaryotes these processes take place simultaneously which allows for rapid responses to an environmental stimuli
 - In eukaryotes these processes occur separately due to the compartmentalisation of the nucleus
 - During transcription, mRNA is formed using a template strand of DNA; the mRNA needs some modification before it can be used for translation
 - **Modification** can take place in isolation within the nucleus before it comes into contact with a ribosome (this is where translation occurs) unlike in prokaryotes where the mRNA immediately meets a ribosome
 - This step reduces the chance of errors occurring in the mRNA code and therefore in the resulting protein following translation

Compartmentalisation In The Cytoplasm

- The **cytoplasm** is not considered an organelle, but it's **separation from organelles** via their membranes is an advantage for the cell
- Organisation of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes
- This ensures that pathways requiring specific **enzymes or metabolites** run smoothly and are not at risk from interference from other cell structures or chemicals
 - Such reactions can coexist within one organelle by localising conflicting reactions, for example in plant cells a type of enzyme called nitrogenase (used for nitrogen fixation) is particularly sensitive to oxygen so it is positioned in an anaerobic part of the cytoplasm away from aerobic reactions
 - Lysosomes require lytic enzymes which could be harmful to the cell if they were not contained by the lysosome membrane
 - During endocytosis a phagocytic vacuole forms around potentially toxic and harmful substances, such as bacteria; this keeps the contents separate from the cytoplasm and rest of the cell until a lysosome can safely digest the material

Endocytosis and Phagocytosis Diagram

The formation of a phagocytic vacuole ensures harmful substances, such as bacteria, are kept separate from the cytoplasm and the rest of the cell