E,目

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

Organelles \& Compartmentalisation

IB Biology - Revision Notes

Cell Organelles

Cell Organelles

Compartmentalised cell structure

- Eukaryotic cells have a more complex ultrastructure than prokaryotic cells
- The cytoplasm of eukaryo tic cells is divided up into membrane-bound compartments called organelles. These compartments are either bound by a single or double membrane
- Due to the absence of a membrane the following structures are not considered organelles
- Cellwall
- Cytoskeleton
- Cytoplasm
- Eukaryo tic cells have a number of compartmentalised organelles including
- The nucleus
- Vesicles
- Ribosomes
- The plasma membrane
- The compartment alis ation of the cell is advantageous as it allows:
- Enzymes and substrates to be localised and therefore available at higher concentrations
- Damaging substances to be kept separated, e.g. digestive enzymes are stored in lysosomes so they do not digest the cell
- Optimal conditions to be maintained forcertain processes e.g.optimal pH fordigestive enzymes
- The numbers and location of organelles to be altered depending on requirements of the cell

The ultrastructure of an animal cell shows a densely packed cell of compartmentalised organelles
Eukaryotic Plant Cell Structure Dia gram

Plant cells have a larger, more regular structure in comparison to animal cells which also contains
compartmentalised organelles

Organelle Adaptations

- In complex cells organelles can become specialised forspecific functions
- These specialised organelles have specific adaptations to help them carry out their functions
- For example, the structure of a organelle is adapted to help it carry out its function (this is why each organelle looks very different from each other)
- The separation of organelles from the rest of the cell, via a membrane (sometimes do uble), is important as it allows the organelle to carry out its own chemical reactions without interference from the rest of the cell

NOS: Students should recognise that progress in science often follows development of new techniques

- Study of the function of individual organelles has become possible following the invention of ultracentrifuges and methods of using them forcellfractionationhad been developed
- In orderto study cells at a molecular level we need to be able to separate out each compartment and studythem individually in a process called cell fractio nation
- To do this a pure sample is needed (containing only the specific organelle being studied)
- This process involves breaking up a suitable sample of tissue and then centrifuging the mixture at different speeds
- Cell fractionation can be split into three stages:
- Homogenis ation - the cell sample is broken up using a ho mogeniser which is a blenderlike machine
- Filtration - the homo genate (containing the homogenised cells) is then filtered through a gauze
- Ultracentrifugation-the filtrate is placed into a tube and the tube is placed in a centrifuge
- A centrifuge is a machine that separates materials byspinning
- This speed can be altered to separate different components of the cell based on their molecularweight
- Until this was invented, research into separate organelles was limited

Cell Compartmentalisation

Separating The Nucleus \& Cytoplasm

- The nucleus is one of the key organelles that distinguishes eukaryo tic cells from prokaryo tic cells
- It allows many cell processes to take place more efficiently than in prokaryo tes
- Gene transcription and translation are two process that occur in botheukaryotes and prokaryotes
- In prokaryotes these processes take place simult aneously which allows for rapid responses to an environmental stimuli
- In eukaryotes these processes occurseparately due to the compartmentalisation of the nucleus
- During trans cription, mRNA is formed using a template strand of DNA; the mRNA needs some modification before it can be used for translation
- Modification can take place in isolation within the nucleus before it comes into contact with a ribosome (this is where translation occurs) unlike in prokaryotes where the mRNA immediatelymeets a ribosome
- This step reduces the chance of errors occurring in the mRNA code and therefore in the resulting protein following translation

Compartmentalisation In The Cytoplasm

- The cytoplasm is not considered an organelle, but it's separationfromorganelles via their membranes is an advantage for the cell
- Organisation of the eukaryotic cell into discrete membrane-bound organelles allows forthe separatio n of incompatible biochemical processes
- This ensures that pathways requiringspecific enzymes or metabolites run smoothly and are not at risk from interference from othercell structures or chemicals
- Such reactions cancoexist within one organelle bylocalising conflicting reactions, for example in plant cells a type of enzyme called nitrogenase (used for nitro gen fixation) is particularly sensitive to oxygen so it is positioned in an anaerobic part of the cytoplasm away from aerobic reactions
- Lysosomes require lytic enzymes which could be harmful to the cell if theywere not contained by the lyso some membrane
- During endocytosis a phagocytic vacuole forms around potentiallytoxic and harmful substances, such as bacteria; this keeps the contents separate from the cyto plasm and rest of the cell until a lyso some can safelydigest the material

Endocytosis and Phagocytosis Dia gram

The formation of a phagocytic vacuole ensures harmful substances, such as bacteria, are kept separate from the cytoplasm and the rest of the cell

