

Studying cells 2

Level: OCR A Level H420 Subject: Biology Exam Board: Suitable for all boards Topic: Studying cells 2 Type: Mark Scheme

To be used by all students preparing for OCR A Level Biology H420 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1

- (a) Correct answer: 1.25; Ignore working
 - **OR** (if wrong answer)

 $\frac{\text{measurement in }\mu\text{m}}{40000} / \frac{\text{measurement in }\text{mm}}{40} = 1 \text{ mark}$

```
125 but wrong order of magnitude = 1 mark
```

2

1 max

(ii) **C** has myosin / thick (and actin / thin) filaments;

OR

A has only actin / thin (/ no myosin / no thick) filaments;

(b) When contracted:

Thick & thin filaments/myosin & actin overlap more;

Interaction between myosin heads & actin / cross-links form;

Movement of myosin head;

Thin filaments / actin moved along thick filaments / myosin;

Movement of thin filaments / actin pulls Z-lines closer together;

Displacement of tropomyosin to allow interaction;

Role of Ca²⁺;

Role of ATP;

Allow ref. to 'sliding filament mechanism' / described if no other marks awarded

4 max

1

1

(c)	(i)	8 has DMD but 3 and 4 do not / 12 has DMD but 6 and 7
		do not / neither parent has the condition but their child has;
		Allow parents 3 and 4 give 8, parents 6 and 7 give 12

- (ii) 4 **AND** 7;
- (iii) Parental genotypes: $6 = \mathbf{X}^{D}\mathbf{Y} \text{ AND } 7 = \mathbf{X}^{D}\mathbf{X}^{d}$

AND

Gametes correct for candidate's P genotypes – e.g.

 \mathbf{X}^{D} and $\mathbf{Y} + \mathbf{X}^{D}$ and \mathbf{X}^{d} ;

Offspring genotypes correctly derived from gametes e.g.

 $\mathbf{X}^{\mathrm{D}}\mathbf{X}^{\mathrm{D}} + \mathbf{X}^{\mathrm{D}}\mathbf{X}^{\mathrm{d}} + \mathbf{X}^{\mathrm{D}}\mathbf{Y} + \mathbf{X}^{\mathrm{d}}\mathbf{Y};$

Male offspring with MD correctly identified: X^dY;

Probability = 0.25 / correct for candidates offsprings genotypes; Accept ¼ / 1 in 4 / 1:3 / 25% NOT '3:1'/'1:4'

4 (d) (i) No gene fragment **G**; 1 (ii) Only one copy of gene fragment F; Male has only one X-chromosome / is XY (c.f. female has two / is XX); 2 (iii) 10 has only one copy of gene fragment G; 10 has only one normal X-chromosome / has one abnormal / has only one normal allele / has one X^d / is $X^D X^d$ / is heterozygous: 11 has two normal X-chromosomes / has 2 normal alleles / is $X^{D}X^{D}$ / has not got X^{d} / has 2 copies of (F and) G; 3 To prevent rejection / prevent antibody production vs. injected cells / (e) (i) injected cells have (foreign) antigen (on surface); 1 (ii) Shows effect of cells / not just effect of injection / not just effect of salt solution; 1

 (iii) Only one person tested so far – need more to see if similar results / need more to see if reliable;

Need to assess if new (dystrophin positive) muscle fibres are functional / if muscle becomes functional;

Can't tell how widespread effect is in the muscle / sample taken near injection site;

Need to test for harmful side effects;

Need to test if successful for other mutations of dystrophin gene;

Need to assess permanence / longevity of result/insufficient time allowed in investigation;

(In this patient) only small response / %;

Further sensible suggestion;

4 max

2	(a)	Differentiation / specialisation	1	
	(b)	(i) (cellulose) <u>Cell</u> wall;	1	
		(ii) Two marks for correct answer 2350–2500;; Accept measured and real lengths in different units for one mark.		
		One mark for a measured length divided by real length;	2	
		 (iii) <u>Chloroplasts</u> absorb <u>light;</u> Q Do not accept chlorophyll as alternative to chloroplasts 		
		Or		
		Large vacuole pushes <u>chloroplasts</u> to edge (of cell);		
		Or Thin / permeable (cell) wall to absorb carbon dioxide;	1 max	[5]
3	(a)	Single layer of cells / few layers of cells;		
<u> </u>		So that light that can pass through / cells absorb light;	2	
	(b)	Method of determining area of field of view / area seen using microscope;		
		Count number of stomata in field of view;		
		Repeats and calculation of mean;	3	
	(c)	Water <u>vapour</u> accumulates / increased humidity / reduced air movement (around stomata);		
		Water potential / diffusion gradient reduced;	2	[7]
4	(a)	(Group of) similar / identical cells / cells with a common origin; Q Ignore references to function	1	
	(b)	 Add iodine / stain specific for starch to the slide / cells / tissue / add iodine / stain specific for starch and examine under microscope; 		
		Blue-black / blue / black / purple;		
		Reject sample	2	

(ii) Need a single layer of cells / only a few cells thick / not too many layers / detail obscured by cells underneath;

Light must be able to pass through;

(c) Both are polymers / made of monomers;

Joined by condensation / molecules can be broken down by hydrolysis;

Both have 1-4 links;

Contain C(arbon), H(ydrogen) and O(xygen) / both made up of glucose;

Both insoluble;

Both contain glycosidic bonds;

Accept other valid answers. Ignore ref to unbranched.

5

6

- 1 Small objects can be seen;
- 2 TEM has high resolution as wavelength of electrons shorter; Accept better

Limitations:

- 3 Cannot look at living cells as cells must be in a vacuum / must cut section / thin specimen;
- 4 Preparation may create artefact
- 5 Does not produce colour image;
- (a) To ensure the colour is the same at the start;
 (b) Yes curve on graph with bromelain present remains approximately constant / rises very slightly; Would decrease if killing of cells occurred / would increase if cells still dividing;
 (c) Use of mouse cells (rather than human); (Carried out) *in vitro* / not in living organisms; Only tested on one type of cancer; Not possible to predict effect on humans (as no data collected);

3 max

2

2 max

[7]

[5]

	(d)	The faster the rate of division the faster the cancer would grow; By measuring rate of cell division you could see how effective the treatment was;		
			2	
	(c)	Not ethical to replace conventional treatment; As life of patient is at risk (if bromelain not effective);	2	
				[10]
7	(a)	(i) break open cells / release cell contents;	1	
		 (ii) keep pH the same / controls pH; prevent change to / denaturing of proteins / enzymes; 	2	
	(b)	(i)	-	
			2	
		 site of respiration which releases energy / ATP; required for movement against concentration gradient; ignore first point for thermodynamically incorrect statements such as "making energy". 		
			2	[7]
•	(a)	Several / more than one polypeptide chain in molecule;		
8		Evidence must only relate to 4° structure		
			1	
	(b)	Chemical bonds formed between sulphur-containing groups / R-groups / form stronger disulphide bonds; Bind chain(s) to each other;		
			2	
	(c)	Different <u>number</u> / sequences of amino acids; Bonds in different places which gives different shape;	2	
	(d)	Outer layer of skin cells are dead / do not respire	-	
	(4)	Do not contain mitochondria / do not produce ATP / release energy; Cells do not have required proteins / carriers;		
			3	

- (e) Advantages:
 - 1 Small objects can be seen;
 - 2 TEM has high resolution as wavelength of electrons shorter; Accept better

Limitations:

- 3 Cannot look at living cells as cells must be in a vacuum;
- 4 must cut section / thin specimen;
- 5 Preparation may create artefact
- 6 Does not produce colour image;
- (a) (i) Chloroplast;
 - (ii) Photosynthesis;

Uses light (energy);

To produce carbohydrates / starch / glucose / sugars / ATP / reduced NADP;

Note that candidates cannot be expected to have a detailed knowledge of photosynthesis.

(b) (i) **A**;

- (ii) **C**;
- (c) (i) Slows enzymes / prevents enzymes being denatured / prevents / stops self-digestion;
 Ignore references to bacteria. Reject enzymes not working
 - (ii) To remove organelle C / nuclei; Which are larger / more dense;

6

1

max 2

1

1

1

2

[14]

9

Г

Г

10	(a)	removes debris / intact cells / sand; which would contaminate sediment A / interfere with the results;	2	
	(b)	(i) nuclei;	-	
		(ii) ribosomes / endoplasmic reticulum / membrane / Golgi;	1	
	(c)	density / size / mass / weight;	1	
	(d)	an electron microscope has a higher resolution; electrons with shorter wavelength;		
			2	[7]
11	(a)	 e.m. gives high resolution due to short wavelength of electrons; antibodies attach specifically to target proteins; gold particles are electron dense; electrons must pass through a vacuum so material must be dead / fixed for e.m.; cross-bridge cycling requires living cells / metabolism / named aspect-e.g. ATP 		
		synthesis;	5	
	(b)	 Ca²⁺ removes blocking molecules / uncovers binding site on actin; correct references to Ca²⁺ binding to troponin / moving tropomyosin; allows myosin heads to attach to actin filaments; allows sliding of the actin and myosin filaments; binding of ATP causes myosin (head) to detach (from actin); (hydrolysis of) ATP releases energy; which changes the configuration / cocking of the myosin head; 		
			5 max	[10]
12	(a)	 (i) Mitochondria site of respiration; Production of ATP / release of energy; For contraction; Do not award credit for making or producing energy. 	3	
		 (ii) Enzymes are proteins; Proteins synthesised / made on ribosomes; 		
	(b)	Lysosomes produce / contain enzymes;	2	
		Which break down / hydrolyse proteins / substances / cells of tail;	2	

- (c) 1. Chop up (accept any reference to crude breaking up);
 - 2. Cold;
 - 3. Buffer solution;
 - 4. Isotonic / same water potential;
 - 5. Filter and centrifuge filtrate;
 - 6. Centrifuge supernatant;
 - 7. At higher speed;
 - 8. Chloroplasts in (second) pellet;

			max 6	[40]
				[13]
	(a)	(i) Golgi;	1	
	(;;)	Executoris:	_	
	(11)		1	
(b)	(i)	Joining together of amino acids / synthesis / production of thyroglobulin / makes protein;		
		Do not credit synthesis of amino acids		
			1	
	(ii)	Electron microscope has high / greater resolution;		
		Because it uses electrons which have smaller wave(length);	2	
				[5]
(a)	(i)	A mitochondrion and B nucleus;		
		(need both for one mark)	1	
	('')		1	
	(11)	•		
			2	
(b)				
	-	·		
	nood	somes / complex cell wall / mesosome / no nucleus,	1	
(c)	use	of differential centrifugation / or description;		
			3 max	[7]
	(a)	 (ii) (b) (i) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (b) <i>any</i> e.g. ribos (c) use of first wall super 	 (ii) Exocytosis; (b) (i) Joining together of amino acids / synthesis / production of thyroglobulin / makes protein; Do not credit synthesis of amino acids (ii) Electron microscope has high / greater resolution; Because it uses electrons which have smaller wave(length); (a) (i) A mitochondrion and B nucleus; (need both for one mark) (ii) increased surface area; for respiration / enzymes; (b) any suitable feature e.g. plasmid / capsule / 70S ribosomes / smaller ribosomes / complex cell wall / mesosome / no nucleus; 	 (a) (i) Golgi; Exocytosis; Joining together of amino acids / synthesis / production of thyroglobulin / makes protein; Do not credit synthesis of amino acids (ii) Electron microscope has high / greater resolution; Because it uses electrons which have smaller wave(length); (ii) A mitochondrion and B nucleus; (need both for one mark) (ii) increased surface area; for respiration / enzymes; 2 (b) any suitable feature e.g. plasmid / capsule / 70S ribosomes / smaller ribosomes / complex cell wall / mesosome / no nucleus; (c) use of differential centrifugation / or description; first / low-spin pellet discarded / spin at low speed to remove cell wall material / cell debris; supernatant re-spun at higher speed / until pellet with chloroplasts is found;

(a) two environmental or developmental variables <u>and</u> explanation;

examples,

16

	all plants of the same age, so same time for cell divisions / differentiation; all plants given the same watering, so same amount of water for	
	cell expansion;	
	(reject reference to photosynthesis)	
	all plants given same light, so same rate of photosynthetic;	
	same temperature, so enzymes / named metabolic process at	
	optimum temperature;	
	same named ion / minerals in soil(e.g. nitrate),	
	so same available for a named function,	
	(e.g. amino acid / protein synthesis);	
		2 max
(b)	count cells using microscope;	
()	count number of cells in cell division / where chromosomes visible;	
	and then the total number of cells in field of view;	
		2 max
(c)	only cells at tip have ability to divide / cells further back don't divide;	
	cells further back differentiating / named example of	
	(accept reference to loss of totipotent cells)	
	differentiated tissue / too old / reduction in plant hormone;	
	cell wall too thick / vacuole too large to allow division;	
		2 max
(d)	new cells added at tip;	
(9)	cells increase in volume / larger;	
	increase in length (of cells);	
	as vacuole s get larger;	
	due to uptake of water (by osmosis);	
		3 max
(i)	cold - no / reduced enzyme action / e.g. stops autolysis;	
	(reject "cell activity reduced")	
	isotonic - stops osmotic effects / description of effect on	
	cells or organelles;	
	buffer - prevents damage to enzymes / proteins;	
		3
(ii)	break open the cells / release the cell contents;	
()		1
/		
(iii)	supernatant / liquid above the pellet;	
	spun at a high(er) speed;	
	(mark as independent points)	
		2

[9]

17	(a)	(i)	homogeniser / blender / pestle and mortar / description e.g. grind with sand;			
					1	
		(ii)	centrifuge / description e.g. spin at high speeds;		1	
	(b)	(i)	chloroplast;		1	
						[3]
18	(a)	(i)	microvilli; (<i>reject brush border</i>)		1	
		(ii)	increased surface area (for diffusion);			
					1	
	(b)	(i)	<pre>16 × (1000) 0.1 principle of measuring scale bar (15 -17 tolerance) dividing by 0.1</pre>			
			160000;			
			(correct answer award 2 marks)		2	
		(ii)	electron microscope has a greater resolving power / objects closer		2	
			together can be distinguished; electron (beams) have a shorter wavelength;			
					2	
	(c)		t diffusion pathway / short pathway to the centre / large SA:V ratio aster, more diffusion;			
					1	[7]
19	(a)		mitochondria; (rough) endoplasmic reticulum;			
			Accept ribosomes/ER/RER for Y			
			Reject smooth endoplasmic reticulum for Y	2		

20

(b)	(i)	(Sections cut at) different angles/in different planes;			
		Ignore name given to organelle			
			1		
	(ii)	Z modifies/packages/transports/secretes mucus/ Z adds sugars to proteins; X provides ATP/energy (for this);			
		Accept makes in relation to Z but not X			
		Ignore names of organelles if function correct			
			2		
<i>,</i> , ,	<i>(</i> 1)	•••• • • • •			[5]
(a)	(i)	Mitochondrion;			
		Neutral: cristae		1	
				1	
	(ii)	(Site of aerobic) respiration / ATP production / energy release;			
		Q Reject: anaerobic respiration			
		Q Reject: energy produced			
		Active transport / transport against the concentration gradient;			
		Accept: energy produced in the form of ATP			
		Accept. chergy produced in the form of Art		2	
(4.)	00				
(b)	89 –	91 gains 2 marks;			
		Correct answer gains 2 marks outright			
	Prine	ciple of:			
	corr	rect measured length gains 1 mark;			
		89-91 (mm) / 1000 <u>or</u> 8.9-9.1 (cm) / 1000 gains 1 mark		2	
(c)	Suita	able explanation given e.g.		-	
. ,		Accept: converse arguments			
	Red	uced <u>surface area;</u> (So) less absorption;			
		Neutral: structure Z incorrectly named			
	(Mer	nbrane-bound) enzymes less effective;			
	•	proteins / polypeptides not digested;			
		Reduced surface area for absorption gains 2 marks			
	Cell	membranes damaged;			
		Fewer / less effective carrier / channel proteins;			
	. ,	Accept: references to diffusion and active transport for 'absorption'			
	Carr	ier / channel proteins damaged;			
		less absorption;			
		Reject: active transport if linked to channel proteins			
				2	

[7]