

Nucleic acids 2

Level: OCR A Level H420

Subject: Biology

Exam Board: Suitable for all boards

Topic: Nucleic acids 2

Type: Mark Scheme

To be used by all students preparing for OCR A Level Biology H420 foundation or higher tier but also suitable for students of other boards.

Mark schemes

|--|

(a) (Pentose) sugar/deoxyribose and phosphate; Reject ribose and phosphorus

1

(b) Semi-conservative replication;

Complementary pairing;

Hydrogen bonding (of bases/nucleotides);

Condensation/described of nucleotides;

DNA polymerase involved;

Accept example (A, T and C, G)

3 max

[4]

2

(a) Two suitable differences between DNA and RNA;

1 mark per correct row to 2 max

e.g.

DNA is double stranded, RNA is single stranded;

DNA has thymine present, RNA has Uracil present;

Accept T and U

DNA is larger/heavier/longer, RNA is smaller/lighter/shorter;

DNA has a deoxyribose sugar, RNA has a ribose sugar;

DNA stays in the nucleus, RNA leaves the nucleus;

2 max

(b) Three suitable examples;

e.g.

Carries coded information about the sequence of amino acids;

Copied from DNA/gene;

Code is in sequence of bases / triplet / three bases / a codon codes for one amino acid:

Moves out of nucleus/goes into cytoplasm;

To ribosomes;

Accept codons allow anticodons / tRNA to bind

Accept carries 'start' and 'stop' codes

Accept moves through ribosomes

3 max

[5]

(a) Any two of:

DNA	RNA
Large molecule	Smaller
Double stranded	Single stranded
Contains Thymine (T)	Contains Uracil (U)
Contains deoxyribose	Contains ribose

2 max

(b) Base sequence (on DNA/in gene);
 Determines sequence of amino acids;
 By determining base sequence on (messenger) RNA;
 Code is a triplet code/three base code for an amino acid;

2 max

(c) Pairs of chromosomes/two chromosomes;With genes for same features / with same genes;At same loci / in same sequence;

Accept same alleles

2 max

[6]

4

(a) Decreases by 50%;

Per generation / per division;

Only accessible if linked to first marking point

OR

¹⁵N makes up ½ after 1 division;

Makes up ¼ after 2nd division;

2

(b) In DNA replication strands separate;
 Each acts as template (for formation of new strand);
 One strand in each new molecule / semi-conservative replication;
 New strands made using ¹⁴N.

2 max

[4]

5

(a) **D** phosphate;

E pentose sugar/deoxyribose;

F (nitrogenous) base/ organic base/ thymine/adenine/ cytosine/guanine;

In **D** reject phosphorous

In **E**

Accept 5-carbon sugar

Reject sugar alone

(b)

DNA	RNA
double-stranded	single-stranded
deoxyribose	ribose
Thymine/T	Uracil/U
very large/long	very small/short

Accept double helix for DNA

Accept longer and shorter

Need comparison but could be in one box

List rule applies.

2 max

3

[5]

6	(a

✓	✓	✓	
			✓
		√	✓

One mark for each correct column Mark ticks only and ignore crosses

- (b) 1. Two marks for box round two hydrogens and one of the oxygens from OH groups on carbons 1 and 4;;
 - 2. One mark from incorrect answer involving any two hydrogens and an oxygen from carbons 1 and 4;

Do not award marks if all atoms concerned are on same carbon atom or are on carbon atoms other than 1 and 4 or where the answer does not have two hydrogen and one oxygen

- (c) (i) 1. Holds chains / cellulose molecules together / forms cross links between chains / cellulose molecules / forms microfibrils, providing strength / rigidity (to cellulose / cell wall);
 - Hydrogen bonds strong in large numbers;x
 Principles here are first mark for where hydrogen bonds are formed and second for a consequence of this.
 Accept microfibres
 - (ii) Compact / occupies small space / tightly packed;

Answer indicates depth required. Answers such as "good for storage", "easily stored" or "small" are insufficient.

7

(a) (i) <u>Deoxyribose</u>;

pentose / 5C sugar = neutral

(ii) Phosphate / Phosphoric acid; phosphorus / P = neutral

- (b) Hydrogen (bonds);
- (c) 381 / 384 / 387;
- (d) (Gln) Met Met Arg Arg Arg Asn;

[9]

2

1

1

1

1

1

1

4

For more help visit our website https://www.exampaperspractice.co.uk/

(e) Change in (sequence of) amino acids / primary structure;

Change in hydrogen / ionic / disulfide bonds leads to change in tertiary structure / active site (of enzyme);

Substrate cannot bind / no enzyme-substrate complexes form;

Q Reject = different amino acids are formed

[8]

3

2

2

8 (a)

DNA	✓	2
mRNA	×	1
tRNA	✓	1

One mark for each correct column Regard blank as incorrect in the context of this question Accept numbers written out: two, one, one

(b) (i) Marking principles

1 mark for complete piece transcribed;

Correct answer
UGU CAU GAA UGC UAG

1 mark for complementary bases from sequence transcribed;

but allow 1 mark for complementary bases from section transcribed, providing all four bases are involved

(ii) Marking principle

1 mark for bases corresponding to exons taken from (b)(i)

Correct answer

UGU UGC UAG

If sequence is incorrect in (b)(i), award mark if section is from exons. Ignore gaps.

[5]

9

(i) sugar or phosphate / S-P / nucleotide chain / backbone / original / parent DNA;

1

1

(ii) X thymine; Y guanine; Z adenine;

(Allow T, G and A) Reject: thiamine

3

[4]

10	(a)	each strand copied / acts as a template; (daughter) DNA one new strand and one original / parent strand;	2	
	(b)	(i) 15N / tube B (DNA), more / greater density; (reject heavier)	1	
		(ii) DNA with one heavy and one light strand; new / synthesised strand, made with ¹⁴ N / light strand;	2	
	(c)	32; 28 32 26;	2	
11		(a) (i) ATA;	1	[7]
		(ii) AUA;	1	
	(b)	tRNA 'clover leaf' shape; (allow reference to loop / folded structure) tRNA standard length; tRNA has an amino acid binding site; tRNA has anticodon available / three exposed bases; tRNA has hydrogen bonds (between base pairs);	2 max	[4]
12	(a)	different form of a gene;	1	
	(b)	hydrogen bonds broken; semi-conservative replication / both strands used (as templates); nucleotides line up complementary / specific base pairing / A and T / C and G; DNA polymerase;		
	(c)	deletion causes frame shift / alters base sequence (from point of mutation); changes many amino acids / sequence of amino acids (from this point); substitution alters one codon / triplet / one amino acid altered / code degenerate / same amino acid coded for;	3	
13	(a)	 X, phosphate; Y, deoxyribose / pentose / 5-carbon sugar; Z, (nitrogenous) base; (accept named base) 	ū	[8]
	(b)	(specific) hydrogen (bonds);	3	
	χ- /		1	

	(c)	ther	nine 28% so adenine 28% efore 44% cytosine and guanine; efore 22% cytosine;		
			(idea of equal amounts T and A, C and G – 1 mark, correct answer 2 marks)		
				2	[6]
4	(a)	appı	ropriately placed box;	1	
	(b)	(i)	B;		
		(ii)	A;	2	
	(c)	(i)	determines (sequence of) amino acids / specific protein produced / mRNA formation;		
		(ii)	hydrogen bonds;	1	
		(iii)	stability / protects bases / replication;	1	
				1	[6]

1	5
	J

(a) (i) Joins nucleotides (to form new strand).

Accept: joins sugar and phosphate / forms sugar-phosphate backbone

Reject: (DNA polymerase) forms base pairs / hydrogen bonds

1

- (ii) (Prokaryotic DNA)
 - Circular / non-linear (DNA);

Accept converse for eukaryotic DNA

Ignore: references to nucleus, binary fission, strands and plasmids

2. Not (associated) with proteins / histones;

Accept does not form chromosomes / chromatin

3. No introns / no non-coding DNA.

Accept only exons

Q Neutral: no 'junk' DNA

2 max

(b) (i) 1. Have different genes;

Reject: different alleles

2. (Sobases / triplets) are in a different sequence / order;

Accept: base sequence that matters, not percentage

3. (So) different amino acid (sequence / coded for) / different protein / different polypeptide / different enzyme.

Unqualified 'different amino acids' does not gain a mark

Reject: references to different amino acids formed

Ignore: references to mutations / exons / non-coding / introns

2 max

- (ii) (Virus DNA)
 - A does not equal T / G does not equal C;

Accept: similar for equal

Accept: virus has more C than G / has more A than T

- 2. (So) no base pairing;
- 3. (So) DNA is not double stranded / is single stranded.

2 max

[7]

16	(a)	1.	DNA replicated; Reject: DNA replication in the wrong stage		
		2.	(Involving) specific / accurate / complementary base-pairing; Accept: semi conservative replication		
		3.	(Ref to) two identical / sister chromatids;		
		4.	Each chromatid / moves / is separated to (opposite) poles / ends of cell. Reject: meiosis / homologous chromosomes / crossing over Note: sister chromatids move to opposite poles / ends = 2 marks for mp 3 and mp 4 Reject: events in wrong phase / stage	4	
	(b)	(i)	To allow (more) light through; Accept: transparent		
			2. A single / few layer(s) of cells to be viewed. Accept: (thin) for better / easier stain penetration	2	
		(ii)	1. More / faster mitosis / division near tip / at 0.2 mm; Neutral: references to largest mitotic index		
			 (Almost) no mitosis / division at / after 1.6 mm from tip; Accept: cell division for mitosis Penalise once for references to meiosis 		
			 (So) roots grow by mitosis / adding new cells to the tip. Accept: growth occurs at / near / just behind the tip (of the root) Accept: converse arguments 		
				2 max	[8]
17	(a)	(i)	Repeating units / nucleotides / monomer / molecules; Allow more than one, but reject two	1	
		(ii)	1. C = hydrogen bonds;		
			2. D = <u>deoxy</u> ribose; <i>Ignore sugar</i>		
			3. E = phosphate;		

3

Ignore phosphorus, Ignore molecule

(iii)	Name of base	Percentage
	Thymine	34
	Cytosine / Guanine	16
	Adenine	34
	Cytosine / Guanine	16

Spelling must be correct to gain MP1

First mark = names correct

Second mark = % correct, with adenine as 34%

(b) (i) 153;

1

2

(ii) Some regions of the gene are non-coding / <u>introns</u> / start / stop code / triplet / there are two DNA strands;

Allow addition mutation

Ignore unqualified reference to mutation

Accept reference to introns and exons if given together

Ignore 'junk' DNA / multiple repeats

[8]

18

(a) (i) Anaphase

1

1

- (ii) 1. Sister / identical chromatids / identical chromosomes;
 - Reject: Homologous chromosomes separate.

Allow any reference to chromatids / chromosomes being identical e.g. same DNA

2. To (opposite) poles / ends / sides;

2

(b) (i) 1. 8.4 / cells with twice DNA content = replicated DNA / late interphase / prophase / metaphase / anaphase;

Any reference to interphase must suggest towards end of interphase.

'Chromosomes replicate' is not enough for DNA replicates.

2. 4.2 = DNA not replicated / (early) interphase / telophase / cell just divided / finished mitosis;

2

/::\	\sim 4	
(ii)	2.1	•
\ II <i>I</i>	4. I	

[6]

1

19

(a) (i) Spindle formed / chromosome / centromere / chromatids attaches to spindle;

Chromosomes / chromatids line up / move to middle / equator (of cell);

Do not award second mark for answers referring to chromosomes 'pairing up'.

Ignore reference to homologous chromosomes unless context suggests pairing which negates second mark.

Neutral: Details on nuclear membrane.

Accept: Diagram for second marking point.

2

(ii) Chromosome / centromere splits / chromatids / 'chromosomes' separate / pulled apart;

To (opposite) sides / poles / centrioles (of cell);

Reject: Homologous chromosomes separate for first marking point.

Accept: Diagram for second marking point.

Chromatids / 'chromosomes' move to poles / sides / centrioles = 2 marks.

2

(b) (i) Form / replace cells quickly / rapidly / divide / multiply / replicate rapidly; Neutral: Repair cells.

Answers must convey idea of 'speed'.

1

(li) Correct answer = 774 minutes / 12 hours 54mins = 2 marks;;

Incorrect answer but indicates 3 cell cycles involved = one mark;

2

(c) Prevents / slows DNA replication / doubling / prevents / slows mitosis;

New strand not formed / nucleotides (of new strand) not joined together / sugar-phosphate bonds not formed;

First marking point must be in context of DNA replication not cell replication.

Do not negate first marking point if role of DNA polymerase is described incorrectly e.g. Reject: 'joins bases / strands together'.

Role of DNA polymerase must be correct for last marking point.

2