E目

Carbohydrates 2

Level: OCR A Level H420
Subject: Biology
Exam Board: Suitable for all boards
Topic: Carbohydrates 2
Type: Mark Scheme

To be used by all students preparing for OCR A Level Biology H420 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1
(a) Any two from:

Loop of DNA; Non-cellulose cell wall;
Plasmid;
Flagellum;

Capsule;
Mesosome;

Accept small ribosomes
(b) (i) (Granules) turn blue-black / dark blue / black / purple with iodine;
(ii) Cellulose / pectin;
(c) Use principle:

Feature of starch;
Consequence in terms of storage;
e.g.

Insoluble;
Therefore will not "wash" out of cell / affect water potential / affect osmosis;
OR
Molecule coiled / branched;
Therefore large amount stored in small space / compact
OR
Does not affect water potential;
So no effect on entry of water (into cell);
use of water;
must be above arrowhead
OH drawn correctly in place of glycosidic bond on each monosaccharide;

3 (a) Digestion / hydrolysis / breakdown of a disaccharide into monosaccharides; OR
(glucose and galactose form lactose) glucose is a monosaccharide;
(b) (i) Dipeptidase / disaccharidase / named disaccharidase;
(ii) Enzymes not lost (with gut contents) / more effective absorption of products formed by these enzymes;
(c) No ATP formed / no energy released by respiration;
[reject "making" energy]
Link ATP to active transport (of galactose) into cells;
(a) (i) fructose;
(ii) correctly drawn (OH group at bottom left);
(b) hydrolysis;
(c) (i) heat with Benedict's solution (disqualify if HCl added); orange / brown / brick red / green / yellow colour or precipitate;
(ii) biuret test $/ \mathrm{NaOH}+\mathrm{CuSO}_{4}$; purple / violet / lilac / mauve;

5 (a) A - granum / thylakoid; chlorophyll molecules to trap light / light absorbing pigments / light dependent reaction / part of light dependent reaction;

B - stroma;
(contains enzymes for) carbon dioxide fixation / light-independent reaction / part of light-independent reaction;
(allow ribosome role of protein in photosynthesis)
(b) (i) C - starch;
(ii) from glucose in a condensation / polymerisation reaction / many glucose molecules joined together;

6 (a) (i) condensation;
(b) (i) D ;
(ii) C ;
(iii) \mathbf{A};
(c) absence of a double bond;
in the (hydrocarbon) chain;
unable to accept more hydrogen / saturated with hydrogen;
(a) 1. A: phospholipid (layer);

1. Reject hydrophobic / hydrophilic phospholipid
2. B: pore / channel / pump / carrier / transmembrane / intrinsic / transport protein; 2. Ignore unqualified reference to protein
(b) (i) Condensation (reaction);
(ii) Organelle named; Function in protein production / secretion;

Function must be for organelle named
Incorrect organelle $=0$
eg

1. Golgi (apparatus);
2. Accept smooth endoplasmic reticulum
3. Package / process proteins;

OR
3. Rough endoplasmic reticulum / ribosomes;
3. Accept alternative correct functions of rough endoplasmic reticulum. ER / RER is insufficient
3. Accept folding polypeptide / protein
4. Make polypeptide / protein / forming peptide bonds;

OR
5. Mitochondria;
6. Release of energy / make ATP;
6. Reject produce / make energy
6. Accept produce energy in the form of ATP

OR

7. Vesicles;
8. Secretion / transport of protein;

8 (a) (i) Glucose and fructose;
Ignore reference to alpha and beta
Either way around
(ii) Glucose and galactose;

Ignore reference to alpha and beta
Either way around
(b) 1. (Amylase) pancreas, produces maltose;

Place and product = 1 mark (mark horizontally)
2. (Maltase) in / on epithelium (of small intestine), produces glucose; Ignore references to salivary glands or saliva Accept wall / lining of small intestine Ignore reference to cells alone Ignore reference to ribosomes / rER
(a)

Statement	Starch	Cellulose	Glycogen
Found in plant cells	\checkmark	\checkmark	
Contains glycosidic bonds	\checkmark	\checkmark	\checkmark
Contains β-glucose		\checkmark	

One mark for each correct row
(b) Hydrolysis;

Accept: if phonetically correct Do not accept: 'hydration'
(c) 1. Coiled / helical / spiral;

Feature = one mark
Explanation = one mark
Note: these are independent marking points
These must be related for both marks but can be in reverse order
2. (So) compact / tightly packed / can fit (lots) into a small space;
3. Insoluble;
4. (So) no osmotic effect / does not leave cell / does not affect water potential;

Accept: prevents osmosis
5. Large molecule / long chain;
6. (So) does not leave cell / contains large number of glucose units;
4. and 6. Accept: can't cross membranes
7. Branched chains;
8. (So) easy to remove glucose;
(d) Two marks for correct answer of 479-521;

Accept: measured and actual lengths in different but correct units for 1 mark

One mark for incorrect answers in which candidate clearly divides measured length by actual length;

The actual range is 23-25mm, If they just divide this by 48 they gain 1 mark

Just writing the formula is insufficient, numbers must be used
(a) (i) β / Beta glucose;

Accept b / B
Reject any reference to alpha / a
(ii) Glycosidic;

Reject references to $\boldsymbol{\alpha}(1-4)$ glycosidic bond, but allow beta 1-4, or unspecified reference to 1-4 $(1,4)$
(iii) OH / hydroxyl / HO;

Reject hydroxide
Reject OH / HO molecule
lgnore alcohol
(b) (i)

Starch	Cellulose		
1. (1,4 and) 1,6 bonds / contains 1,6 bonds / branching	1. 1,4 bonds / no 1,6 bonds / unbranched / straight;		
2. All glucoses / monomers same way up	2. Alternate glucoses / monomers upside down;		
3. Helix / coiled / compact	3. Straight;		
4. Alpha glucose	4. Beta glucose;		
5. No (micro / macro)			
fibrils / fibres		\quad	5. Micro / macro
:---			
fibrils / fibres;			

1 mark per pair of contrasts, both starch and cellulose required Accept other comparable differences eg hydrogen bonds within starch but between cellulose molecules
(ii) 1. H-bonds / micro / macro fibrils / fibres;

Reject strong hydrogen bonds
2. Strength / rigidity / inelasticity;
'Strong hydrogen bonds' = 0 but 'Strong hydrogen bonds give strength (to the molecule)' $=1$

11 (a) (i) (Human cells) don't have a cell wall;
Accept "they" refers to human cells.
(ii) (Affects) protein synthesis;

Allow description e.g. 'amino acids not joined together / translation.
Reject: affects transcription.
(b) 1. Mutation present / occurs;

Ignore antibiotic causes mutation.
2. Resistance gene / allele;

1. or 2.

Reference to immunity disqualifies first credited marking point.
3. Resistant bacteria (survive and) reproduce;

Reference to mitosis negates marking point 3.

12 (a) (i) Hydrolysis;
Accept phonetic spelling. Ignore reaction.
(ii) (Alpha) glucose;

Accept a glucose.
Reject β glucose / beta glucose
(b) (i) Add Benedict's (reagent) and heat / warm;

Red / orange / yellow / green (colour);
Reject Add HCl
Accept brown, reject other colours
(ii) 2 products / 2 sugars produced;

Look for idea of two
Accept named monosaccharides produced.
"More" insufficient for mark
Neutral if incorrect products named
Neutral "lactose is a polysaccharide"
Neutral "lactose is not a reducing sugar"
Neutral: Reference to surface area.
(c) 1. Galactose is a similar shape / structure to lactose / both complementary; Q Reject: Same shape / structure
2. (Inhibitor / Galactose) fits into / enters / binds with active site (of enzyme);

Accept blocks active site
3. Prevents / less substrate fitting into / binding with (active site) / fewer or no E-S complexes;

Look for principles:

1. Shape
2. Binding to active site
3. Consequence

2 max
(a) Helical / spiral / coiled;

Compact / description e.g. 'tightly packed';
Feature = one mark
Explanation = one mark
Insoluble;
Prevents osmosis / uptake of water / does not affect water potential / (starch) does not leave cell;

These must be related for both marks but can be in reverse order.
Large molecule / long chain;
Does not leave cell;
Allow idea of compact / helical / spiral / coiled due to bonding for two marks.
(b) (i) β / beta Glucose;

Q Reject alpha glucose
(c) Long / straight / unbranched chains (of glucose joined by) hydrogen bonds; Q Ignore reference to alpha glucose

Form (micro)fibrils / (macro)fibrils;
Provide rigidity / strength / support;
Allow suitable descriptions for last point e.g. 'prevents bursting';

14

One mark for each correct column
Mark ticks only and ignore crosses
(b) 1. Two marks for box round two hydrogens and one of the oxygens from OH groups on carbons 1 and 4;;
2. One mark from incorrect answer involving any two hydrogens and an oxygen from carbons 1 and 4;

Do not award marks if all atoms concerned are on same carbon atom or are on carbon atoms other than 1 and 4 or where the answer does not have two hydrogen and one oxygen
(c) (i) 1. Holds chains / cellulose molecules together / forms cross links between chains / cellulose molecules / forms microfibrils, providing strength / rigidity (to cellulose / cell wall);
2. Hydrogen bonds strong in large numbers; x

Principles here are first mark for where hydrogen bonds are formed and second for a consequence of this.
Accept microfibres
(ii) Compact / occupies small space / tightly packed;

Answer indicates depth required. Answers such as "good for storage", "easily stored" or "small" are insufficient.

So there is no / less food in digestive system;
Which could affect the absorption of glucose;
(a) (i) (Lactose +) Water; \rightarrow (Glucose +) Galactose;

Accept: $\mathrm{H}_{2} \mathrm{O}$ for water
(ii) Hydrolysis;

Accept: if phonetically correct
(b) (i) (Add Biuret reagent to both solutions) - no mark;

Neutral: positive / negative result
Lactase / enzyme will give purple / lilac / mauve;
Neutral: incorrect reference to the method

OR

Lactose / reducing sugar will not give purple / lilac / mauve / will remain blue;
(ii) Lactase / enzyme is a protein;

Accept: lactase / enzyme contains peptide bonds
(a) (Group of) similar / identical cells / cells with a common origin;

Q Ignore references to function
(b) (i) Add iodine / stain specific for starch to the slide / cells / tissue / add iodine / stain specific for starch and examine under microscope;

Blue-black / blue / black / purple;
Reject sample
(ii) Need a single layer of cells / only a few cells thick / not too many layers / detail obscured by cells underneath;

Light must be able to pass through;
(c) Both are polymers / made of monomers;

Joined by condensation / molecules can be broken down by hydrolysis;
Both have 1-4 links;
Contain C(arbon), H(ydrogen) and O(xygen) / both made up of glucose;
Both insoluble;
Both contain glycosidic bonds;
Accept other valid answers. Ignore ref to unbranched.
(a) Enzyme / active site has a (specific) tertiary structure;

Only glucose has correct shape / is complementary / will bind / fit to active site;
(Forming) enzyme-substrate complex;
Q Allow second mark if candidate refers to correct shape or complementary in terms of the enzyme. Do not allow 'same' shape
Q Do not allow third mark if active site is described as being on substrate.
(b) (Only detects glucose whereas) Benedict's detects (all) reducing sugars / named examples;

Provides a reading / is quantitative / Benedict's only provides a colour / doesn't measure concentration / is qualitative / semiquantitative;

Is more sensitive / detects low concentration;
Red colour / colour of blood masks result;
Can monitor blood glucose concentration continuously;
Q Do not credit quicker / more accurate unless qualified.
Q Allow Benedict's detects monosaccharides for first mark point.
(c) (i) Broken down by enzymes / digested / denatured (by pH) too large to be absorbed;
(ii) Study not carried out on humans / only carried out on rats;

Long-term / side effects not known;
Scientists have vested interest;
Study should be repeated / further studies / sample size not known;

19 (a) (i) Glucose;
Fructose;
Any order.
(ii) Lactose has a different shape / structure;

Does not fit / bind to active site of enzyme / sucrase;
Only allow a second mark if reference is made to the active site. Max 1 mark if active site is described as being on the substrate.

OR

Active site of enzyme / sucrase has a specific shape / structure; Does not fit / bind to lactose;

Do not accept same shape.
(b) (i) Rose and fell;

Peak at 45 (minutes) / concentration of $6.6\left(\mathrm{mmol} \mathrm{dm}^{-3}\right)$;
(ii) Glucose (produced by digestion) is absorbed / enters blood;

Decrease as used up / stored;

