GCSE AQA Math 8300

Structure \& Calculation

Mark Scheme

"We will help you to achieve A Star "

M1.

Alternative method 1

Orders numbers
7.69 .612 .412 .615 .417 .4

Smallest to largest or largest to smallest
7.6 and 17.4
and
9.6 and 15.4
and
12.4 and 12.6

Pairs in any order

Alternative method 2

```
(9.6 + 12.6 + 15.4 + 7.6 + 12.4 + 17.4) \div3 or 25
or
(9.6 + 12.6 + 15.4 + 7.6 + 12.4 + 17.4) \div6 or 12.5
    Implied by one correct pair
```

7.6 and 17.4
and
9.6 and 15.4
and
12.4 and 12.6

Pairs in any order

M1.
$\frac{15}{35}$

M3.101.4 ${ }^{\frac{1}{2}}$ estimated as 10
condone - 10
$\left(6.43^{\circ}=\right) 1$
$7.99^{\frac{2}{3}}$ estimated as 4

14

$$
\begin{aligned}
& \text { condone }-6 \text { if -10 used } \\
& \text { ft fully correct evaluation with B2 scored }
\end{aligned}
$$

M4.
No and shows an example of an even multiple of $3+$ a multiple of $2=$ an even number

$$
\text { eg No and } 6+4=10
$$

M5.Correct order and all four correct
values seen in same format
3, 3.15, 3.25, 3.5(0)
or $3,3 \frac{15}{100}, 3 \frac{25}{100}, 3 \frac{50}{100}$
or $3,3 \frac{3}{20}, 3 \frac{1}{4}, 3 \frac{1}{2}$
or 300(\%), 315(\%), 325(\%), 350(\%)
or $\sqrt{9}, 3.15, \frac{13}{4}, 3 \frac{1}{2}$ after values
seen in same format
oe
B2 all four correct values in same format
or
three correct values in same format and correct order for their values
B1 three correct values in same format
SC1 $\sqrt{9}, 3.15, \frac{13}{4}, 3 \frac{1}{2}$ with no working

M6.(a) $20(p)$
Accept $£ 0.20$ (p)
(b) $10 \times(25-$ their 20$)$

> or $10 \times 25-10 \times$ their 20 oe
> ft their 20 from (a) if <25

50(p)
Accept $£ 0.50$ (p)

M7.

$$
x^{-\frac{2}{3}} \text { or } a=-\frac{2}{3}
$$

$$
B 2\left(x^{\frac{-1}{3}}\right)^{2} \text { or }\left(x^{2}\right)^{\frac{-1}{3}} \text { or }\left(x^{\frac{2}{3}}\right)^{-1} \text { or }
$$

$$
\left(x^{-2}\right)^{\frac{1}{3}} \text { or }\left(x^{\frac{1}{3}}\right)^{-2} \text { or } \frac{1}{x^{\frac{2}{3}}} \text { or }-\frac{2}{3}
$$

B1
$(\sqrt[3]{x})^{2}$ or $\left(\sqrt[3]{x^{2}}\right)^{-1}$ or $\left(\frac{1}{x^{2}}\right)^{\frac{1}{3}}$
or $\frac{1}{\left(x^{2}\right)^{\frac{1}{3}}}$ or $\left(\frac{1}{\sqrt[3]{x}}\right)^{2}$
or base x with any negative index.

M8.
(a) 63
(b) $5(y+1)$ or $5 y+5$
or $(4+1)(y+1)$ or $4 y+4+y+1$

Additional Guidance

Condone $(4+1) \times(y+1)$

Condone $5 \times(y+1)$ or $5 \times y+5$

Condone missing final bracket $5 \times(y+1$

Do not ignore further incorrect work
(c) $(x+1)(y+1)$
or $x(y+1)+y+1$
or $y(x+1)+x+1$
or $x y+x+y+1$

Additional Guidance

Condone $(x+1) \times(y+1)$

Condone $x \times(y+1)+y+1$

Do not ignore further incorrect work
(d) $(2 x+1)(y+1)$
or $2 x(y+1)+y+1$
or $y(2 x+1)+2 x+1$
or $2 x y+2 x+y+1$

Additional Guidance

Condone $(2 x+1) \times(y+1)$

Condone $2 x \times(y+1)+y+1$

Do not ignore further incorrect work

M9.(a) 15 and 10 in either order
B1 15 with a number less than or equal to 15 or two numbers with a total of 25
(b) 17 and 11 in either order
$B 1$ two numbers giving a range of 6 for set C or two numbers with a total of 28

M10.
(a) 375.112(1656)

Condone if correctly rounded to 7 significant figures or better eg 375.1122
(b) 20^{2} or 400 or $\sqrt[3]{1000}$ or 10 or 5
$400-10 \div 5=398$ or $400-2=398$

M11.
$x=81$ and $y=19$
B1 100 - (a square number) correctly evaluated
or 100- (a prime number) correctly evaluated
or A list of square numbers up to and including 81 with one error or omission and a list of prime numbers up to and including 19 with one error or omission
or A correctly evaluated trial of a square number plus a prime number.
e.g. $49+53=102$

M12.
(a) 0.0048
(b) 0.000012
(c) 2.5×10^{6}

M13.4 540000000 or 4540×10^{6}
$4.54(0) \times 10^{9}$
SC1 their 4540000 000, with digits 454, correctly converted to standard form
SC1 4.54(0) $\times 10^{3}$ (million)
SC1 4.5×10^{6}

M14.
$\sqrt{48}$ or $k=48$
ft value seen in the form $a \sqrt{b}$ where a and b are integers > 1

M2.

$$
\begin{aligned}
& \frac{10}{3 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \text { or } \frac{10 \sqrt{5}}{15} \\
& \frac{10}{3 \sqrt{5}} \times \frac{3 \sqrt{5}}{3 \sqrt{5}} \text { or } \frac{30 \sqrt{5}}{45} \\
& \text { or } \frac{\sqrt{20}}{3} \\
& \text { oe } \\
& \text { Must multiply numerator and denominator } \\
& \text { eg } \frac{10}{\sqrt{45}} \text { is MO } \\
& \frac{10}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}} \text { is } M 1
\end{aligned}
$$

$\frac{2 \sqrt{5}}{3}$

