MARK SCHEME

Answer	Explanation
	(a) Using the formula we can write the percentage error in Jurgen's estimate as
	$\epsilon = \left \frac{6432400 - 6378137}{6378137} \right \times 100$ $= 0.8507656$ (M1)
	$= \boxed{0.851\%}$ A1
	(b) (i) As Jurgen has assumed the Earth is spherical we can use the formula for the circumference of a circle to find the circumference of the Earth. Hence
	$C_{\text{Earth}} = 2\pi r$ (M1) = $2\pi \times 6432400$ = 40415961
	$= \boxed{40420000\mathrm{metres}} \qquad \qquad \mathbf{A1}$
	$= 4.042 \times 10^7 \text{ metres} $ A1
	(a) 1.475×10^{-1}
	(b) 0.15
	(c) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 0.1475$ and $v_{\rm A} = 0.15$, we obtain
	$\epsilon = \left rac{0.15 - 0.1475}{0.1475} ight imes 100\%$
	To the state of th
	(a) Substituting $\alpha = 30^{\circ}$, $x = 6$ and $y = 46$ in the expression for z, we get $10 \sin 30^{\circ}$
	z = 3(6) + 46 $z = 0.078125$
	(b) (i) 0.08
	(ii) 0.0781
	(iii) 7.81×10^{-2}
	(a) Substituting $\alpha = 54^\circ$, $\beta = 18^\circ$, $x = 24$ and $y = 18.25$ in the expression for A, we get
	$A = \sqrt{\frac{\sin 54^* - \sin 18^*}{24^2 + 2(18.25)}}$ ≈ 0.028571
	(b) (i) 0.0286
	(ii) 0.029
	(c) 2.86×10^{-2}
	Answer

5	(a) Substituting $x=45$ °, $a=18$ and $b=\sqrt{2}$ in the expression for Q , we get
	$Q = \frac{(\sin 90^{\circ} + \sqrt{2})(2\sin 45^{\circ} - 1)}{18^{2} - 4\tan 45^{\circ}}$
	= 0.003125
	(b) (i) 0.003
	(ii) 0.00313
	(c) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 0.003125$ and $v_{\rm A} = 0.003$, we obtain
	$\epsilon = \left rac{0.003 - 0.003125}{0.003125} ight imes 100\%$
	=4%
6	(a) Substituting $S=529$ in the volume of a hemisphere formula, we get
	$V = \sqrt{\frac{4(529)^3}{243\pi}}$
	$\approx 880.7 \mathrm{cm}^3$
	(b) 881 cm ³
	(c) $8.81 \times 10^2 \text{ cm}^3$
	(c) (6.81 × 10 tm.)
7	(a) (i) If we calculate the mean of the measurements, we get
	$\mu = \frac{4.92 + 4.95 + 5.02 + 4.95}{4}$
	= 4.96
	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right imes 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain
	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$
	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A}-v_{\rm E}}{v_{\rm E}}\right \times 100\%$ with $v_{\rm E}=4.96$ and $v_{\rm A}=5$, we obtain $\epsilon = \left \frac{5-4.96}{4.96}\right \times 100\%$ (b) (i) 21
	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ (b) (i) 21 (ii) 2.14×10^1
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ (b) (i) 21 (ii) 2.14×10^{1} (a) The distance between points A(40, -100) and B(1, -2) is
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ (b) (i) 21 (ii) 2.14×10^{1} (a) The distance between points A(40, -100) and B(1, -2) is
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ (b) (i) 21 (ii) 2.14×10^{1} (a) The distance between points A(40, -100) and B(1, -2) is
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 4.96$ and $v_{\rm A} = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ (b) (i) 21 (ii) 2.14×10^{1} (a) The distance between points A(40, -100) and B(1, -2) is
8	(ii) Using the percentage error formula $\epsilon = \left \frac{v_A - v_E}{v_E} \right \times 100\%$ with $v_E = 4.96$ and $v_A = 5$, we obtain $\epsilon = \left \frac{5 - 4.96}{4.96} \right \times 100\%$ $= 0.81\%$ (i) 2.14×10^1 (ii) 2.14×10^1 (a) The distance between points $A(40, -100)$ and $B(1, -2)$ is $AB = \sqrt{(1 - 40)^2 + (-2 - (-100))^2}$ ≈ 105.475

9	(a) The area of the rectangle is
	$A = \left(7.6 imes 10^2 ight) imes \left(1.5 imes 10^3 ight)$
	$=1.14 imes10^6\mathrm{cm}^2$
	(b) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 1140000$ and $v_{\rm A} = 1200000$, we obtain
	$\epsilon = \left rac{1200000 - 1140000}{1140000} \right imes 100\%$ $pprox 5.26\%$
10	(a) Using the volume of a cuboid formula $V = l \times w \times h$, we get
	V=9.6 imes 7.4 imes 5.2
	= 369.408
	$= 369.41 \text{ cm}^3 (2 \text{ d.p.})$
	(b) (i) $7.35 \le w < 7.45$
	(ii) $5.15 \le h < 5.25$
	(c) Using the lower bound for each dimension, and the volume formula, we get
	V=9.55 imes7.35 imes5.15
	= 361.491
	$= 361 \text{ cm}^3 (3 \text{ s.f.})$
	(d) 3.61×10^2
11	(a) Substituting $x = 12$, $y = 8$ and $z = 15$ in the expression for F , we get
	$F=rac{(4\sin 30^{\circ}-1)(2\tan 45^{\circ}+1)}{12^{2}-8^{2}}$
	$12^2 - 8^2$ $(= 0.0375)$
	<u> </u>
	(b) (i) 0.038
	(ii) 0.04
	(c) Using the percentage error formula $\epsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\%$ with $v_{\rm E} = 0.0375$ and $v_{\rm A} = 0.03$, we obtain
	$\epsilon = \left \frac{0.03 - 0.0375}{0.0375} \right \times 100\%$ = 20%

12

(a) Substituting a = 0.975, b = 4.41 and c = 35 in the expression for r, we get

$$r = 2(0.975) - \frac{\sqrt{4.41}}{35}$$

- (b) (i) a = 1, b = 4, c = 40
 - (ii) Substituting $a=1,\,b=4$ and c=40 in the expression for r, we get

$$r = 2(1) - \frac{\sqrt{4}}{40}$$
= 1.95

(c) Using the percentage error formula $\epsilon = \left| \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right| \times 100\%$ with $v_{\rm E} = 1.89$ and $v_{\rm A} = 1.95$, we obtain

$$\epsilon = \left| \frac{1.95 - 1.89}{1.89} \right| \times 100\%$$

$$\approx 3.17\%$$

All Rights Reserved