Q1.		
(a)	nucleus	1
	neutron	1
	gamma rays	1
	in this order only	1
(b)	25000000 2400000	
		1
	11 an answer of 10.4 with no working scores 1 mark	1
	an answer of 11 scores 2 marks	
(c)	any two from: • waste is radioactive <i>allow nuclear waste</i>	
	• waste has a long half-life allow waste remains dangerous for a long time	
	 waste is toxic waste needs to be buried allow waste is difficult to dispose of 	
	risk of catastrophic accidents <i>allow named accident e.g. Fukushima, Chernobyl, Three Mile Island</i>	
	fuel is non-renewable	2
(d)	similarity: (carbon dioxide concentration and global temperature have) both increased allow they both show a positive correlation	1
	difference: the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off	
	allow carbon dioxide (concentration) increases more quickly than temperature (increase)	1

[9]

Q2.

(a) any **three** from:

	no <u>carbon dioxide</u> emitted (to produce electricity) no greenhouse gases is insufficient	
	doesn't cause global warming allow climate change or greenhouse effect for global warming	
	 nuclear power doesn't cause earthquakes more energy released per kg of fuel (compared to shale gas) 	3
(b)	uranium or plutonium <i>ignore any numbers given</i>	1
(c)	a <u>neutron</u> is absorbed by a (large) nucleus a description in terms of only atoms negates first two marking points	1
	the nucleus splits into two (smaller) nuclei	1
	releasing energy (and gamma rays)	1
	and (two / three) neutrons	1

[8]

Q3.

(a)	a uranium <u>nucleus</u>	1
	absorbs a neutron	1
	(uranium-236 nucleus) splits into two smaller nuclei or Kr and Ba nuclei or	
	krypton and barium nuclei	1
	and releases 3 neutrons and energy	1
(b)	light nuclei	1
	join to form a heavier nucleus allow hydrogen nuclei for light nuclei allow helium nucleus for heavier nucleus	

		(son	ne of the) mass of the nuclei is converted to energy allow particles for nuclei	1	
(c	:)	any	two from:		
		• •	easy to obtain / extract available in (very) large amounts releases more energy (per kg) do not accept figures only naturally occurring is insufficient seawater is renewable is insufficient less cost is insufficient allow produces little / no radioactive waste	2	
					[9]
Q4.					
(a	ı)	neutrons		1	
(b))	generate electricity accept produce electricity accept heat water accept produce steam turns turbines is insufficient		1	
(c	:)	(i)	a neutron	1	
		(ii)	two particles \mathbf{X} released from the uranium-235	1	
			uranium-235 shown splitting into two fragments		
			each particle X shown colliding with a uranium-235 and producing 2 further particles X		
			one uranium-235 shown splitting is sufficient, provided no contradiction shown	1	[5]

Q5.

 (a) (i) (enough) dust and gas (from space) is pulled together accept nebula for dust and gas accept hydrogen for gas accept gas on its own dust on its own is insufficient mention of air negates this mark

by: gravitational attraction or gravitational forces		
gravitaty ignore any (correct) stages beyond this	1	
(ii) joining of two (atomic) nuclei (to form a larger one) do not accept atoms for nuclei	1	
 (iii) more sensitive astronomical instruments / telescopes or infrared telescopes developed accept better technology more knowledge is insufficient 	1	
(b) (i) (other) planets / solar systems do not accept galaxy moons is insufficient	1	
(ii) provided evidence to support theory accept proves the theory	1	
(c) elements heavier than iron are formed only when a (massive) star explodes accept materials for elements accept supernova for star explodes accept stars can only fuse elements up to (and including) iron	1	[7]
Q6. (a) (i) (atoms with the) same number of protons allow same atomic number or same proton number (atoms with) different number of neutrons	1	
allow different mass number	1	
(ii) 82 (iii) 124	1	

1 mark if top boxes total = 265
and bottom boxes total = 108
1 mark for 4 and 2 for alpha

(d) (i) 3 plotted points $\pm \frac{1}{2}$ small square

2

1

best line through points

		(ii)	190–205 (pm) or correct from student's line	1	[20]
Q7	7.				
	(a)	insid	de the Sun	1	
	(b)	fusi	on	1	
	(c)	ene	rgy	1	
				1	[3]
Q8	8.				
	(a)	(i)	splitting of a(n atomic) nucleus		
			do not accept splitting an atom	1	
		(ii)	Neutron	1	
	(h)	(;)	nuclei have the same charge	1	
	(U)	(1)	or		
			nuclei are positive		
			accept protons have the same charge	1	
		(ii)	(main sequence) star		
			accept Sun or any correctly named star		
			accept red (super) giant	1	
	(c)	(i)	any two from:		
			easy to obtain / extract available in (very) large amounts		
			 releases more energy (per kg) 		
			do not accept figures only		
			produces little / no radioactive waste.		
			seawater is renewable is insufficient		
			less cost is insufficient	2	
		(ii)	anv one from:	-	
		()	makes another source of energy available		
			 Increases supply of electricity able to meet global demand 		
			less environmental damage		
			reduces amount of other fuels used.		
			accept any sensible suggestion		
			ассерга зрести ехатріе		

(d)	12		
		allow 1 mark for obtaining 3 half-lives	
		·	2

1

Q9.

(a)	J	reason only scores if J is chosen	1
	(only dwa	y) stars (about) the same / smaller size / mass as the Sun become black rfs	I
		accept smaller than the Sun	
		accept it is the smallest	
		accept (only) small stars become black dwarfs	1
(b)	(i)	become a supernova	
		or it will explode	
		ignore subsequent correct stages	1
			1
	(ii)	cannot take measurements needed	
		do not have the technology	
		do not accept cannot measure mass	1
	(iii)	advances in (measuring) techniques / technology / knowledge	1
(c)	any	five from:	
		ignore any information up to the end of the main sequence	
		Apply the list rule if more than 5 points are made	
	•	a red giant	
		red supergiant is incorrect	
	•	heavier elements are formed (by fusion)	
		elements heavier than iron are formed is incorrect	
	•	a white dwarf	
		supernova, neutron star, black hole are incorrect	
	•	star cools / fades	
	•	star stops emitting energy / radiation	
		star loses all energy is insufficient	5

[10]

(a)	(same) number of protons same atomic number is insufficient			
(b)	(i)	nuclei split	1	
()	(-)	do not accept atom for nuclei / nucleus	1	
	(ii)	(nuclear) <u>reactor</u>	1	
(c)	beta		1	
	any (• •	one from: atomic / proton number increases (by 1) <i>accept atomic / proton number changes by 1</i> number of neutrons decreases / changes by 1 mass number does not change <i>(total) number of protons and neutrons does not change</i> a neutron becomes a proton	1	
(d)	(average) time taken for number of nuclei to halve or (average) time taken for count-rate / activity to halve			
(e)	(i)	6.2 (days) Accept 6.2 to 6.3 inclusive allow 1 mark for correctly calculating number remaining as 20 000 or allow 1 mark for number of 80 000 plus correct use of the graph (gives an answer of 0.8 days)	2	
	(ii)	radiation causes ionisation allow radiation can be ionising that may then harm / kill healthy cells accept specific examples of harm, eg alter DNA / cause cancer	1	
	(iii)	benefit (of diagnosis / treatment) greater than risk (of radiation) accept may be the only procedure available	1 [11]	

Q11.

(a) (i) nuclear reactor

star

(ii)	nuclei are joined (not split)
	accept converse in reference to nuclear fission
	do not accept atoms are joined

(b) (i) any **four** from:

Q12.

		•	neutron (neutron) absorbed by U (nucleus) <i>ignore atom</i>	
			do not accept reacts	
		•	forms a larger nucleus	
		• •	(this larger nucleus is) unstable (larger nucleus) splits into two (smaller) <u>nuclei</u> / into Ba and Kr releasing <u>three</u> neutrons and energy	
			accept fast-moving for energy	4
	(ii)	56 (E	Ba)	
				1
		57 (l	_a)	
			if proton number of Ba is incorrect allow 1 mark if that of La is a second seco	
				1
		$^{0}_{-1}\beta$		
			accept e for β $^{139}_{56}Ba \longrightarrow ^{139}_{57}La + ^{0}_{-1}\beta$	
			scores 3 marks	
				1
2.				
(a)	uran	ium-23	accept any correct indication	
				1
(b)	split	ts / bre	eaks (into two smaller parts)	
			nucleus is separated is insufficient	
			uo noi accept atom spilis – on its own	1
		and	(two / three) neutrons	_
				1
(C)	stea	am		

correct order only

1

1

[10]

turbine	1	
generator	1	[6]

Q13.

(a)	(i)	plutonium (239)	
		accept Pu / Thorium / MOX (mixed oxide)	
		do not accept uranium-238 or hydrogen	1
	(ii)	(energy) used to heat water and	1
		produce (high pressure) steam	1
		the steam drives a turbine (which turns a generator)	1
(b)	Ne	eutron(s) shown 'hitting' other U-235 nuclei one uranium nucleus is sufficient	
	U-2:	35 nuclei (splitting) producing 2 or more neutrons	1
(c)	an	y two from:	1
	•	neutrons are absorbed (by boron / control rods)	
	•	there are fewer neutrons	
	•	chain reaction slows down / stops accept fewer reactions occur	2
Q14.			
(a)	force	es (within the star) are balanced if specific forces are mentioned they must be appropriate	1
(b)	(i)	bigger the mass (of the star) the shorter the 'main sequence' period accept bigger the star the shorter the time	1
	(ii)	any one from:	
		insufficient evidence	
		 do not know (exact) amount of hydrogen in star accept do not know (exact) mass of star 	

[8]

- time too long (to measure directly)
- may be other factors (not yet known) that determine length of 'main sequence' period
- values are based on theory / calculation

(iii) faster than

larger stars have a shorter 'main sequence' period so they must have the faster (rate of) nuclear fusion

there must be a link between shorter 'main sequence' and nuclear fusion, this may be implied from the first marking point

the end of 'main sequence' happens as the hydrogen in (the core of) a star is used up

or

(since) they use up hydrogen at a faster (rate)

accept more massive stars (are brighter so) release energy faster

1

1

1

1

(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the <u>Marking</u> <u>guidance</u>, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a basic description of what happens to a star much larger than the Sun after the 'main sequence' period.

OR

Two stages are correctly named and are in the correct sequence.

Level 2 (3-4 marks)

There is a clear description of what happens to a star much larger than the Sun after the 'main sequence' period.

AND

At least two stages are correctly named and are in the correct sequence.

Level 3 (5-6 marks)

There is a detailed description of what happens to a star much larger than the Sun after the 'main sequence' period.

AND

At least three stages are named, in the correct sequence. There are no additional incorrect stages given.

Examples of the points made in the response: extra information

• (the core of the) star runs out of hydrogen

- (the star) expands (to form)
- (the star) cools (to form)
 - the core shrinks
 - helium starts to fuse to form other elements
- a red supergiant

accept super red giant do **not** accept red giant

• (outer layers) explode

• fusion of lighter elements to form heavier elements (up to iron)

- as a supernova
 - elements heavier than iron are formed
 accept heaviest elements are formed
 - core shrinks
- becoming a neutron star
 - if mass large enough (core collapses)
- (to form) a black hole

if a correct description and sequence for a star the same size as the Sun and much bigger than the Sun given without clearly indicating which is which is limited to Level 2

6

[12]

(a)	fusion	
	do not credit any response which looks like 'fission'	
		1
	of hydrogen / H (atoms)	
	credit only if 1 st mark point scores	
		1
(b)	fusion of other / lighter atoms / elements	
	reference to big bang nullifies both marks	
		1
	during supernova / explosion of star(s)	
		1
(c)	the (available) evidence: supports this idea	
()	or	
	does not contradict this idea	
	Or	
	can be extrapolated to this idea	
	(electromagnetic) spectrum from other stars is similar to sun	

[6]

1

Q16.

(a)	answers must be in terms of nuclear fuels	
	concentrated source of energy idea of a small mass of fuel able to generate a lot of electricity	1
	that is able to generate continuously accept it is reliable or can control / increase / decrease electricity generation idea of available all of the time / not dependent on the weather ignore reference to pollutant gases	on
	the energy from (nuclear) fission	1
	is used to heat water to steam to turn turbine linked to a generator	1
(b)	carbon dioxide is not released (into the atmosphere)	1
	but is (caught and) stored (in huge natural containers)	1
Q17. (a)	(i) (nuclear) fission is the splitting of a (large atomic) nucleus do not accept particle/atom for nucleus	1
	(nuclear) fusion is the joining of (two atomic) nuclei (to form a do not accept particles/atoms for nuclei	a larger one) 1
	 (ii) energy accept heat/radiation/nuclear energy accept gamma (radiation) do not accept neutrons/neutrinos 	1
(b)	(i) uranium (–235) accept U (–235) ignore any numbers given with uranium accept thorium accept MOX (mixed oxide)	

do not accept hydrogen

		(ii)	(same) number of protons accept (same) atomic number accept (same) positive charge ignore reference to number of electrons		1	[5]
Q1	8. (a)	(i)	protostar			
	()	()	correct order only	1		
			red giant	1		
			black dwarf	1		
		(ii)	Alpha Centauri A			
			accept any correct indication, eg alpha, centauri, A reason only scores if Alpha Centauri A is chosen	1		
			stars (about) same size as Sun form white / black dwarfs or			
			very large stars form red super giants / supernova/black hole it is the same size as the Sun is insufficient			
			same life cycle as the Sun is insufficient	1		
	(b)	Ator	nic nuclei inside the star join together	1		[6]
Q1	9. (a)	a pr	otostar is at a lower temperature			
	()	or a pro	ptostar does not emit radiation /energy	1		
		as (r	nuclear) fusion reactions have not started accept heat or light for energy			
	(b)	by (nuclear) fusion	I		
			nuclear fusion and fission negates this mark	1		
		of hy	drogen to helium	1		

elements heavier than iron are formed in a supernova

accept a specific example e.g. heavier elements such as gold are formed in a supernova accept heavier elements (up to iron) formed in red giant/red super giant reference to burning (hydrogen) negates the first 2 marks

Q20.

three lines correct

Q21.

(a)

- gravitational attraction accept 'gravity' accept (nuclear) fusion
- (b) <u>radiation 'pressure'</u> and gravity / gravitational attraction must be in correct context

are balanced / in equilibrium accept are equal <u>and opposite</u> do **not** accept 'equal' or there is sufficient / a lot of hydrogen / fuel

do **not** accept constant supply of hydrogen

to last a very long time / for (nuclear) fusion

1

1

		this mark only scores if linked to the supply of hydrogen / fuel		
		reference to burning negates both marks	1	
(c)	(i)	(conversion of) hydrogen to helium		
	()	accept (conversion of) lighter elements to heavier elements	1	
		by (nuclear) <u>fusion</u>		
		note do not credit spelling of 'fusion' which could be 'fission' reference to burning negates both marks	1	
	(ii)	massive supply / lots of hydrogen		
	(")	massive supply / lots of <u>mydrogen</u>	1	
(d)	dis	ributed throughout the Universe / space		
		do not accept Solar System for Universe	1	
				[7]
000				
QZZ.	ta			
		reason may score even if alpha or gamma given		
			1	
an	y two f	rom:		
•	ma	ss number does not change		
	tota	I number of protons and neutrons does not change		
•	ator	nic / proton number increases by 1		
	or nun	nber of protons increases by 1		
•	nun	nber of neutrons goes down by 1		
		allow for 2 marks a neutron splits / changes into a proton and electron / beta		
		candidates that answer correctly in terms of why alpha and		
		gamma are not possible, gam both marks	2	
				[3]
Q23.				
(a)) (foi	ces due to) gravity and radiation pressure	1	
	cori	ect direction of forces	1	
	(for	ces) are balanced / equilibrium / equal accept for 3 marks an answer in terms of sufficient hydrogen (1)		

to keep fusion reaction (1)
reference to burn / burning negates this mark
going at a continuous /steady rate (1)
if fuel is used instead of hydrogen maximum of 2 marks

(b) the Sun will remain stable (for several billion years)

based on evidence

accept a specific example of evidence eg that the Sun has remained stable during the life of our planet / for 4.5 billion years **or** still contains more than 50 % hydrogen **or** by comparison with the lifecycle of (similar) stars allow a refutation eg not based on prejudice / whim / hearsay / folk law / historical or religious authority

[5]

1

1

1

1

1

1

1

Q24.

(a)

 (i) (two) <u>nuclei</u> (of light elements) join accept <u>hydrogen atoms</u> for nuclei

> forming a larger / heavier nucleus / one accept comparative term equivalent to larger accept forms a helium (nucleus / atom) this mark only scores if fusion is in terms of hydrogen atoms

(ii) stars

accept a named star e.g. the Sun accept nebula mention of planets negates answer

(b) (i) any **one** from:

- (currently) only experimental
- <u>reaction</u> does not last long enough
- use more energy than they produce allow difficult to control do **not** allow inefficient on its own

- will give another source of energy
- unlimited fuel supplies / energy
 accept unlimited hydrogen
- would not produce any radioactive waste accept less radioactive waste accept nuclear for radioactive do **not** accept toxic waste
- want to show that it can be done accept any sensible suggestion do **not** accept answers only in terms of fossil fuels or carbon dioxide

[5]

1

2

3

Q25.

(a) gravitational force(s) (1) accept 'gravity'

balanced by (force(s) due to)	radiation	pressure	(1)
accept equal			

(b) by (nuclear) <u>fusion</u> (1)

of hydrogen to helium (other light elements) (1) allow 'low density' for light accept hydrogen nuclei / atoms form helium response must clearly link one element(s) producing others fusion to produce helium (2)

heavy element / elements heavier than iron are only produced (by fusion) in a <u>supernova</u> (1)

allow dense for heavy ignore any reference to elements undergoing radioactive decay (to form other elements)

Q26.

(a)	isotopes	1
(b)	²³¹ ₉₀ Th	1
	correct order only	1

(c) (i) (nuclear) fission

	accept fision	
	do not accept any spelling that may be confused with fusion	1
	(ii) neutron / neutrons	1
(-1)		1
(D)	plutonium (239)	
	accept MOX (mixed 0xide)	
	do not accent uranium 238 / bydrogen	
	do not accept dramam 2507 hydrogen	1
Q27.		
(a)	(enough) <u>dust and gas</u> (from space)	
	accept nebula for dust and gas	
	accept hydrogen for gas	
	mention of air negates this mark	1
	pulled together by:	-
	gravitational attraction	
	gravitational forces	
	or	
	• gravity	1
(b)	forces (in the star) are balanced	
()	accept equal and opposite for balanced	
	accept in equilibrium for balanced	
		1
	forces identified as gravity and radiation pressure	
	both forces are required	
	gravitational forces inwards balance / equal radiation pressure outwards for 2 marks	
	accept for 2 marks an answer in terms of sufficient hydrogen to keep the fusion reactions going	
	accept for 1 mark an answer in terms of sufficient fuel to	
	keep the <u>fusion</u> reactions going	1
(\mathbf{c})	(evolodes as) a supernova	
(0)		1
	any one from:	
	 outer layer(s) thrown into space 	
	do not accept just 'thrown into space'	
	 scatters dust and gas into space (for the formation of new stars) 	

[6]

do not accept just 'dust and gas'

- elements distributed throughout space
 do not accept just 'distributed'
- matter left behind / core may form a neutron star do not accept just 'neutron star'
- a black hole will form if the gravitational forces are enormous / sufficient mass is left behind

do **not** accept just 'black hole' do **not** accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient

[6]

1

Q28.

four lines correct

allow 1 mark for each correct line

if more than 1 line is drawn from a box in List A, mark each line incorrect

Q29.

(a) fusion (1)

of hydrogen/H (atoms)(1) do **not** credit any response which looks like 'fission' **or** the 'word' 'fussion' credit only if a nuclear reaction [4]

(b) fusion of other/lighter atoms/elements (1) reference to big bang nullifies both marks

during super nova/explosion of star(s) (1)

 (c) explosion of star(s)/super nova (1)
 reference to big bang nullifies both marks reference to the star running out of energy/material nullifies both marks

at the end of the 'life' of star(s) / when they 'die' (1)

Q30.

(a)

Particle	Relative Mass	Relative charge
Proton	1	
Neutron		0

accept one, accept +1 do **not** accept -1

accept zero do **not** accept no charge/ nothing/neutral unless given with 0

(b) equal numbers/amounts of protons and electrons

protons and electrons have equal but opposite charge accept protons charge +1 and electron charge -1 accept (charge) on proton cancels/balances (charge) on electron accept positive (charges) cancel out the negative(charges) neutrons have no charge is neutral do **not** accept total charge of protons, electrons (and neutrons) is 0 unless qualified

(c) (i) (3) fewer neutrons

accept lower/ smaller mass number do **not** accept different numbers of neutrons any mention of fewer/more protons/electrons negates mark accept answers in terms of U-238 providing U-238 is 2

2

1

1

1

1

[6]

	(ii)	neutron	1
	(iii)	(nuclear) fission accept fision do not accept any spelling that may be taken as fusion	1
Q31.			
(a)	grav	itational	
		accept gravity do not accept weight	1
(b)	(i)	planet(s)	
. ,		accept comet(s) accept asteroid(s)	
		do not accept moon(s)	1
	(ii)	balanced accept equal / the same / are in equilibrium	1
	(iii)	Milky Way	
		accept milky way	1
Q32.			
(a)	(i)	the bigger the <u>masses</u> (of the dust and gases then) the bigger the force / gravity (between them) accept the converse	
			1
	(ii)	the greater the distance (between the dust and gases then) the smaller the force / gravity (between them)	
		accept the converse	1
(b)	<u>radia</u> these	ation 'pressure' and gravity / gravitational attraction e are balanced / in equilibrium	1
		must be in correct context do not accept are equal	
	or th	nere is sufficient / a lot of hydrogen / fuel to last a very long time second mark consequent on first	1

[4]

[7]

- (c) any **two** from:
 - hydrogen runs out / is used up
 - nuclei larger than helium nuclei formed
 accept bigger atoms are formed however do **not** accept any
 specific mention of an atom with a mass greater than that of
 iron
 - (star expands to) / become(s) a red giant

Q33.

(a)	(i)	(nuclear) fission	
		accept fision providing clearly not f <u>u</u> sion	1
	(ii)	(released) neutrons are absorbed by further (uranium) <u>nuclei</u> accept hit <u>nuclei</u> for absorbed / hit do not accept atom for nuclei	1
		more neutrons are released (when new nuclei split) accept for both marks a correctly drawn diagram	1
	(iii)	increases by 1	
		or goes up to 236	1
(b)	any	two from:	
	•	(more) neutrons are absorbed accept there are fewer neutrons	
	•	(chain) reaction slows down / stops accept keeping the (chain) reaction controlled	
	•	less energy released accept heat for energy accept gases (from reactor) are not as hot	2
Q34. (a)	(a) :	supernova (explosion)	1

(b) solar system contains heavy elements / elements heavier than hydrogen and helium (1)

these (heavy) elements are / were formed by (nuclear) fusion (1)

accept minor misspellings for 'fusion' but **not** anything which could also be 'fission'

(at the very high temperature(s)) in a super nova / when stars explode (1)

[4]

[5]

3

Q35.

(a)	dust	accept 'solid (s)'	
			1
	space	accept 'from supernova / supernovum / supernovas'	1
(b)	By atoms j	ioining together only one ticked or otherwise unambiguously identified	1
(c)	Milky Way (galaxy)		1
(d)	The answe	er depends on beliefs and opinions, not scientific evidence. only one ticked or otherwise unambiguously identified	1