Mark schemes

Q1.				
(a)	(i)	$0.15 \times 0.08 = 0.012$	1	
	(ii)	kg m/s	1	
	(iii)	equal to	1	
(b)	or	mentum of the air increases e backwards increases accept air moves faster accept momentum backwards increases accept pushes more air back(wards)	1	
	so n	nomentum of the toy must increase		
		force forwards (on the toy) increases accept momentum forwards must increase it = toy	1	[5]
Q2. (a)	(i)	distance travelled under the braking force accept distance travelled between applying the brakes and stopping	1	
	(ii)	 icy / wet roads	1	
	(iii)	greater the speed the greater the braking force (required) must mention both speed and force	1	
(b)	22.	5 allow 1 mark for showing correct use of the graph with		

```
for showing e.g. 90÷4
                 an answer 17 gains 1 mark
                 any answer such as 17.4 or 17.5 scores 0
                                                                                          2
(c)
     (i)
           momentum before = momentum after
           (total) momentum stays the same
                 accept no momentum is lost
                 accept no momentum is gained
                 ignore statements referring to energy
                                                                                          1
     (ii)
           5
                 allow 2 marks for correctly obtaining momentum before as
                 12 000
                 or
                 allow 2 marks for
                 1500 \times 8 = 2400 \times V
                 allow 1 mark for a relevant statement re conservation of
                 momentum
                 or
                 allow 1 mark for momentum before = 1500 x 8
                                                                                          3
(d)
      the seat belt stretches
                                                                                          1
     driver takes a longer (impact) time to slow down and stop (than a driver hitting
     a hard surface / windscreen / steering wheel)
                                                                                          1
     for the (same) change of momentum
                 accept so smaller deceleration / negative acceleration
                                                                                          1
     a smaller force is exerted (so driver less likely to have serious injury than
     driver without seat belt)
     the seat belt stretches (1)
                 do not accept impact for force
     driver travels a greater distance while slowing down and stopping (than a
     driver hitting a hard surface / windscreen / steering wheel) (1)
     for (same) amount of work done (1)
                 accept for (same) change of KE
     a smaller force is exerted (so driver less likely to have serious injury than
     driver without seat belt) (1)
                 do not accept impact for force
```

misread figures

1

Q3.

(a) speed

must be in correct order

direction

(b)

Quantity	Scalar	Vector
Momentum		✓
Acceleration		✓
Distance	✓	
Force		✓
Time	✓	

any three correct scores **2** marks any two correct scores **1** mark only one correct scores zero

(c) (i) 16 and 2

16 **or** 2 scores **2** marks allow 1 mark for correct substitution, ie

8 x 2

or

 4×0.5

kg m/s or Ns

(ii) 1.5 (m/s)

٥r

their $p_A + p_B = 12 \times v$ correctly calculated allow 2 marks for correct substitution, ie $18 = 12 \times v$

or

their $p_A + p_B = 12 \times V$

18 or their $p_A + p_B$ scores 1 mark if no other mark awarded

(iii) 14 (kg m / s)

or

their p_A - p_B

3

1

3

3

		10.0 (0)	1
Q4.			
(a)	incr	eases	1
	incre	eases	
			1
(b)	23 ((m) accept 43 circled for 1 mark	
		accept 9 + 14 for 1 mark	
(0)	/i)	all points correctly platted	2
(c)	(i)	all points correctly plotted all to ± ½ small square	
		one error = 1 mark	
		two or more errors = 0 marks	2
		line of best fit	1
	(ii)	correct value from their graph (± ½ small square)	
			1
(d)	(i)	70	
		$\frac{1}{2} \times 35 \times 4$ gains 2 marks attempt to estimate area under the graph for 1 mark	
		attempt to estimate area ander the graph for 1 mark	3
	(ii)	line from (0.6,35)	1
		sloping downwards with a less steep line than the first line	1
		cutting time axis at time > 4.6 s	-
		accept cutting x-axis at 6	1
(e)	(i)	42 000	-
` '	.,	4000 × 05 mains 4 magnic	

(e) (i) 42 000 1200 × 35 gains **1** mark

kgm / s
Ns

(ii) 10 500 (N) 42 000 / 4 gains 1 mark alternatively: $a = 35 / 4 = 8.75 \text{ m} / \text{s}^2$

Q5.

(a) Zero / 0

Accept none
Nothing is insufficent

1

velocity / speed = 0

accept it is not moving paintball has not been fired is insufficient

1

(b) 0.27

allow **1** mark for correct substitution, ie $p = 0.003(0) \times 90$ provided no subsequent step

2

1

(c) equal to

[5]

Q6.

(a) momentum before (jumping) = momentum after (jumping)

accept momentum (of the skateboard and skateboarder) is conserved

1

before (jumping) momentum of skateboard and skateboarder is zero accept before (jumping) momentum of skateboard is zero accept before (jumping) total momentum is zero

1

after (jumping) skateboarder has momentum (forwards) so skateboard must have (equal) momentum (backwards)

answers only in terms of equal and opposite forces are insufficient

1

(b) 7

accept –7 for **3** marks allow **2** marks for momentum of skateboarder equals 12.6

or

 $0 = 42 \times 0.3 + (1.8 \times -v)$

or

allow 1 mark for stating use of conservation of momentum

[6]

	•	(make shape / body) more streamlined accept a correct description accept lower the seating position of the driver		
	•	increase power of engine faster engine is insufficient		
	•	reduce mass / weight (of go-kart) change wheel size is insufficient	2	
(b)	(i)	A–B	_	
(6)	(1)	reason only scores if A–B is chosen	1	
		steepest / steeper gradient / slope	1	
	(iii)	1820		
		allow 1 mark for correct substitution, ie 140×13 provided no subsequent step shown	2	
			2	[6]
Q8.				
(a)	D – E			
		reason only scores if D – E chosen	1	
	shal	owest slope / gradient		
		accept smallest distance in biggest time accept longest time to travel the same distance		
		accept the line is not <u>as</u> steep		
		accept it is a less steep line do not accept the line is not steep		
<i>a</i> . v			1	
(b)	80	000 allow 1 mark for correct substitution, ie 16 000 × 5 provided		
		no subsequent step shown	2	
(0)	(i)	straight line starting at origin	2	
(c)	(i)	accept within one small square of the origin		
			1	
		passing through t = 220 and d = 500	1	
	(i)	186		
	(*)	accept any value between 180 and 188 accept where their line intersects given graph line correctly		
		read ±4 s	1	

(a) any **two** from:

Q9.	•					
	(a)	(i)	momentum before = momentum after			
			accept no momentum is lost			
			accept no momentum is gained			
			or			
			(total) momentum stays the same		1	
					1	
		(ii)	an external force acts (on the colliding objects)			
			accept colliding objects are not isolated		1	
	(b)	(i)	9600			
	(D)	(1)	allow 1 mark for correct calculation of momentum before or			
			after ie 12000 or 2400			
			<pre>or correct substitution using change in velocity = 8 m/s</pre>			
			ie 1200 × 8			
					2	
			kg m/s			
			or Ns			
			this may be given in words rather			
			than symbols			
			do not accept nS		1	
		(ii)	3 or their (b)(i) 3200 correctly calculated			
		(11)	allow 1 mark for stating momentum before = momentum			
			after			
			or			
			clear attempt to use conservation of momentum		2	
						[7]
Q10						
	(a)	98				
			allow 1 mark for correct substitution ie ½ × 0.16 × 35 × 35 provided no subsequent step shown			
			an answer of 98 000 scores 0			
				2		
	(b)	(i)	9.6			
	χ- /	()	allow 1 mark for (change in velocity =) 60			
			ignore negative sign	_		
				2		
		(ii)	9600			

	ignore negative sign or	
	their (b)(i) ÷ 0.001 correctly calculated, unless (b) (i) equals 0	1
(c)	increases the time	1
	to reduce/change momentum (to zero) only scores if 1st mark scored decreases rate of change of momentum scores both marks provided there are no contradictions accept decreased acceleration/deceleration equations on their own are insufficient	1
Q11. (a)	(moving in) different / opposite directions accept one has positive momentum the other negative momentum accept they have different velocities	1
(b)	(i) momentum before = momentum after or (total) momentum stays the same accept no momentum is lost accept no momentum is gained	1
	(ii) 2.2 allow 1 mark for calculation of teenagers' momentum as 22 (kgm/s) and allow 1 mark for correct statement, eg momentum before = momentum after or allow 2 marks for a numerical expression of above, eg $55 \times 0.4 = m \times 10$ or $0 = (55 \times 0.4) + (m \times (-10))$	3
(c)	any two from:	
	work is done	

(against) friction
 any reference to increasing friction negates this marking point

• (transforming) (kinetic) energy into heat

2

[7]

Q12. (a)	(i) 16 000		
	allow 1 mark for correct substitution ie 3200 × 5	2	
	(ii) 16 000 or their (a)(i)	1	
	(iii) less than	1	
(b)	increases	1	
	decreases correct order only	1	[6]
Q13.			
(a)	direction	1	
(b)	allow 1 mark for calculating and identifying momentum 800 or allow 1 mark for correct substitution into second equation $\frac{1200 \times 9}{0.2}$		
(c)	increases the time taken (for head) to stop accept increases impact time do not accept reference to slowing down time unless qualified	2	
	quamou	1	
	decreases rate of change in momentum accept reduces acceleration / deceleration accept increases the time taken to reduce momentum to zero is worth 2 marks reduces momentum is insufficient	0	
	reduces the <u>force</u> (on the head)	1	[6]
Q14. (a)	(i) lorry reason only scores if lorry chosen		

		accept weight for mass accept heaviest		
		accept correct calculations for all 3 vehicles the biggest is insufficient	1	
	(ii)	2450		
		allow 1 mark for correct substitution		
		ie 175 × 14	2	
(b)	(i)	increases		
()	()	accept any clear indication of the correct answer		
			1	
	(ii)	speed increases		
		accept velocity for speed		
		accept gets faster		
		do not accept it accelerates on its own		
		moves more is insufficient	1	
	(:::\	atesialat line anaina ta 0.00		
	(iii)	straight line going to 6, 20		
		allow 1 mark for a curve going to 6,20 or a straight line diagonally upwards but missing 6,20		
		or a straight line diagonally upwards but missing 0,20	2	
		horizontal line from 6,20 to 8,20		
		allow a horizontal line from where their diagonal meets		
		20m/s to 8,20		
			1	[9]
				[9]
Q15.				
(a)	4.2			
()		2 marks for correct substitution and transformation, ie 1155/275		
		allow 1 mark for correct resultant force with a subsequent incorrect method, ie 1155		
		allow 1 mark for an incorrect resultant force with a		
		subsequent correct method,		
		eg answers of 7.27 or 10.34 gain 1 mark	3	
(b)	(i)	YES		
(D)	(1)	marks are for the explanation		
		any two from:		
		data (from police files) can be trusted		
		 data answers the question asked 		

· large sample used

NO

any two from:

- · the sample is not representative
- the sample size is too small
- accident files do not indicate age / experience of riders
 an answer YES and NO can score 1 mark from each set of
 mark points

2

1

1

1

(ii) more accidents with motorbikes up to 125 cc
accept for **2** marks an answer in terms of number of under
125 cc to accidents ratio compared correctly with number of
over 500 cc to accidents ratio

even though there are fewer of these bikes than bikes over 500 cc

(c) (i) increases the time taken to stop

accept increases collision time

decreases rate of change in momentum

accept reduces acceleration / deceleration

$$F = \frac{\Delta mv}{\Delta t}$$
accept reduces momentum is insufficient

reduces the force (on the rider)

(ii) YES

any sensible reason, eg:

the mark is for the reason

- cannot put a price on life / injury accept may save lives
- fewer (serious) injuries
 accept reduces risk of injury
- reduces cost of health care / compensation

NO

any sensible suggestion, eg:

		needs to be specific		
		total number of riders involved is small	1	[11]
Q16. (a)	(i)	momentum before = momentum after or (total) momentum stays the same accept no momentum is lost accept no momentum is gained	1	
	(ii)	an external force acts (on the colliding objects) accept colliding objects are not isolated	1	
(b)	(i)	allow 1 mark for correct calculation of momentum before or after ie 12000 or 2400 or correct substitution using change in velocity = 8 m/s ie 1200 x 8	2	
		kg m/s this may be given in words rather than symbols or Ns	1	
	(ii)	3 or their (b)(i) ÷ 3200 correctly calculated allow 1 mark for stating momentum before = momentum after or clear attempt to use conservation of momentum	2	[7]
Q17. (a)	(i)	10800 allow 1 mark for correct substitution i.e. 900 × 12	2	
	(ii)	arrow pointing towards the left allow anywhere on the diagram or at bottom of the page	1	
(b)	zero			

money better spent on ...

	ve	locity	is	zero
--	----	--------	----	------

accept speed for velocity accept stopped / not moving accept a calculation i.e. $900 \times 0 = 0$

[5]

Q18.

- (a) (i) 4.5
- allow 1 mark for correct substitution i.e. 9 ÷ 2

2

(ii) m/s²

accept answer given in (a)(i) if not contradicted here

1

(iii) speed

1

(iv) straight line from the origin passing through (2s, 9m/s)

allow **1** mark for <u>straight</u> line from the origin passing through to t = 2 seconds

allow **1** mark for an attempt to draw a straight line from the origin passing through (2,9)

allow **1** mark for a minimum of 3 points plotted with no line provided if joined up would give correct answer. Points must include(0,0) and (2,9)

2

(b) (i) **B**

if A or C given scores 0 marks in total

1

smallest (impact) force

1

on all/every/any surfaces

these marks are awarded for comparative answers

1

(ii) (conditions) can be repeated

or

difficult to measure forces with human athletes

accept answers in terms of variations in human athletes e.g. athletes may have different weights area / size of feet may be different difficult to measure forces athletes run at different speeds

accept any answer that states or implies that with humans the conditions needed to repeat tests may not be constant e.g.

		do not accept the robots are more accurate removes human error is insufficient	
		fair test is insufficient	
		rail tost is insumoient	1
Q19.			
(a)	(i) 21	10	
		allow 1 mark for correct substitution i.e. 35×6	2
	kg	m/s or Ns	
		do not accept n for N	
		accept 210 000g m/s for 3 marks	1
	(ii) 84	0	
	() -	if answer given is not 840 accept their (a)(i) in kg m/s ÷ 0.25 correctly calculated for both marks	
		allow 1 mark for correct substitution i.e. $210 \div 0.25$ or their (a)(i) $\div 0.25$	
			2
(b)	increase	es the time to stop	
		accept increases impact time do not accept any references to slowing down time	
		as not assept any reserviness to disming down time	1
	decreas	ses rate of change in momentum	
		accept reduces acceleration/deceleration reduces momentum is insufficient	
		reduces momentum is insumcient	1
	reduces	s the force (on the child)	
			1
(c)	any two	from:	
	• ins	sufficient range of tests/thicknesses for required cfh	
		accept need data for thicknesses above 80 mm/ cfh 2.7 m not enough tests is insufficient	
	• (se	eems to be) some anomalous data	
	• (re	epeats) needed to improve reliability (of data)	
		accept data/ results are unreliable	
		do not accept maybe systematic/random error do not accept reference to precision	
	• ne	ed to test greater range/variety of dummies	
		accept children for dummies	
		accept specific factor such as weight/height/size	2

athletes unable to maintain constant speed during tests (or during repeat tests)

[10]

(d)	Tyres do not need to be dumped/b materials	ourned/ less land-fill/ saves on raw		
	accept less waste do not accept recycling	g on its own	1	[11]
020				
Q20. (a)	(i) velocity includes direction accept velocity is a vec	otor	1	
		ning values of 16 and 4 from the graph a or correct attempt to calculate an	2	
	(iii) any two from:			
	velocity zero from 0 to	4 seconds		
	• increasing in 0.2 s (or	very rapidly) to 8 m/s		
	 decreasing to zero over 	er the next 8 seconds	2	
	(iv) momentum before does not of ignore reference to end			
	or total momentum changes			
	or an external force was app	blied	1	
(b)	to reduce the momentum of the dr	river	1	
	a <u>smaller</u> (constant) force would b do not accept reduces	oe needed the impact / impulse on the driver	1	[8]
Q21. (a)			3	
(b)	greater change in momentum			
	or greater mass of air (each seco	ond)		

	or increase in velocity of air accept speed for velocity		
	force upwards increased lift force is increased		
	do not accept upthrust		
	αο ποι ασσορί αραπασί	1	
	or force up greater than force down		
	accept weight for force down		
	accept weight for force devin	1	
(c)	 increase the time to stop 	1	
		1	
	decrease rate of change in momentum or same momentum change		
	accept reduced deceleration/ acceleration	1	
		1	
	reducing the force on the toy		
	do not accept answers in terms of the impact/ force being absorbed		
	do not accept answers in terms of energy transfer		
	do not credit impact is reduced		
	part to the same of the same o	1	
			[8]
Q22.			
(i)	momentum (change in) = mass × velocity (change in)		
	accept speed	1	
		1	
(ii)	9000		
	1500 × 6 for 1 mark but not from incorrect equation	2	
		2	
	kilogram metre(s) per second or kg m/s	1	
		1	
(iii)	either 7.5 (m/s)		
	or change in momentum of car B change in momentum of car A (1) 9000 = 1200 × v (1)		
	or $v = 9000 \div 1200 (1)$		
	or error carried forward from part (ii) examples 5 (m/s) if 6000 offered in (ii) (3) 12.5(m/s) if 15000 offered in (ii)		
	(3)	2	

Q23.

(a) (i) momentum = mass x velocity accept ... x speed or any transposed version 1 (ii) 11.2 to 11.3 0.75 x 15 for **1** mark 2 kg m/s down(wards) or Ns down(ward) n.b. both unit **and** direction required for this mark 1 11.2 to 11.3 (iii) accept same numerical answer as part (a)(ii) accept answer without any unit or with the same unit as in part (a)(ii), even if incorrect, but any other unit cancels the mark 1 change in momentum time (iv) force = accept transposed version 1 (v) 112 to 113 or numerical value from (a)(ii) \times 10 $11.25 \div 0.1$ **or** (a)(ii) $\div 0.1$ for **1** mark 2 newton(s) or N accept Newton(s) do **not** credit 'Ns' or n 1 (b) (the user will experience a) large change in momentum do **not** credit just '... momentum changes' (but) seat belt increases the time for this to occur or seat belt stops you hitting something which would stop you quickly do not credit just '... stops you hitting the windscreen etc.' 1 (so) the force on the user is less(*) 1 (so) less chance of (serious / fatal) injury(*) (*) depends on previous response re momentum or continued movement 1

Q24.

(a) (i) either the momentum in a particular direction after (the collision) is the same as the momentum in that direction before (the collision) accept 'momentum before equals momentum after' for 1 or total momentum after (the collision) equals the total momentum before (the collision) (2) accept 'momentum before equals momentum after' for 1 mark 2 (ii) explosion(s) or (action of a) rocket (motor(s)) or (action of a) jet (engine) or firing a gun accept any other activity in which things move apart as a result of the release of internal energy eg throwing a ball 1 (iii) momentum = mass \times velocity **or** any correctly transposed version accept momentum = mass × speed accept p = mvdo **not** accept momentum = ms or M = mv1 (iv) 8.0 if answer 0.8 not given, any **two** for (1) each: momentum of $X = 0.2 \times 1.2$ = momentum of X and Y after impact $= 0.3 \times v$ **or** $= (0.1 + 0.2) \times v$ 3 m/s 1 to the right 1 (v) any **one** from: conservation of momentum (applies) no external forces do not accept just 'no (other) forces act' friction is negligible / insignificant

no friction

(b)	force =	e (change in) momentum ÷ time or any correctly transposed version	1	
	4000 o	or 4 kilonewtons dependent on correct or no equation force = 5 ÷ 0.00125 gains 1 mark	2	[13]
Q25. (a)	Total r	momentum (of a system of bodies) remains constant accept momentum before (a collision) = momentum after (a collision)	1	
	Provide	ed no external force acts	1	
(b)	(i) I	rotate the compressor	1	
	(ii) •	fuel is mixed with the air and ignited		
	•	causing an increase in the pressure or temperature or speed of the gases accept air out faster than air in accept gases have momentum or		
	•	force backwards		
		exhaust gases have momentum (backwards) or force (backwards) if the answer is in terms of force then this third point must be scored before the fourth can be credited engine or aircraft has (equal) momentum forwards or force force	wards	
			4	
(c)	m = 35	answer 0.35 one mark only allow one mark if 105 000 or 475-175 or 300 have been used	2	
			2	[9]
Q26. (a)	(i) :	zero accept nothing	1	
	s	speed is zero		

		accept not moving	1	
	(ii)	A		
	()		1	
		largest mass or weight		
		accept heaviest luggage		
		do not accept largest luggage	1	
	/iii\	momentum does change		
	(iii)	momentum does change accept yes		
		ассері уез	1	
		direction is changing		
		accept velocity is changing do not accept answers in terms of		
		speed changing		
			1	
(b)	kg m	n/s		
			1	[7]
				[,]
Q27.				
(a)	(i)	direction indicated		
(α)	(1)	accept to right or + or – or arrow drawn on diagram		
		, 0	1	
		300		
			1	
		kg m/s or Ns		
			1	
	(ii)	300 (kg m/s)		
			1	
(b)		nentum of person towards jetty = momentum of boat away from jetty		
	or to	otal momentum is constant so as person goes one way boat goes the	e other	
		1 mark is for the idea of momentum conservation1 is for direction		
			2	
(c)	time	of collision increases		
()		do not accept momentum is conserved		
			1	
	so a	smaller force is exerted		
		do not accept designed to absorb energy or momentum	4	
			1	
	to p	roduce the same change of momentum or impulse force		
		do not accept cushions fall		

Q28.				
(a)	the	snow		
,			1	
	sma	llest mass		
		do not accept it is not moving		
		accept weight for mass		
		accept it's the lightest		
		assopt the are agreed	1	
(b)	(i)	decrease		
(b)	(i)	ueciease	1	
		velocity reducing		
		accept speed for velocity		
		accept it is stopping		
		do not accept the brakes are on		
		accept car is decelerating	1	
			•	
	(ii)	forwards		
			1	
		direction of momentum does not change		
		or the car stops and snow does not		
		dependent on forwards given		
		accept answers given in terms of Newton's second or first law of motion		
		accept momentum of snow		
		do not accept the snow still has momentum		
			1	
(c)	Ns			
()			1	
				[7]
Q29.				
(a)	(i)	6		
		for 1 mark		
			1	
	(ii)	6		
	()	for 1 mark		
		161 1 mam	1	
	/:::\	4.5		
	(iii)	1.5		
		for 1 mark	1	
			-	
	(iv)	4.5		
		for 1 mark		

(v) 3

 $W = 675\ 000\ J$ **OR** ke = 1/2 mv²

gets 1 mark

		1
(b)	initial ke = 12J;	
	final ke = $0.75J + 6.75J$;	
	energy loss = 4.5J for 1 mark each	
	(If wrong; any correct ke value gains 1 mark; maximum of 2 path through calculation clear and correct gains 1 mark) (ignore either ball – max 1 mark)	3
		[8]
Q30.		
(a)	Each scale optimum Else both half size Straight line joining 30,0 to 30,0.67 to 0, 5.67 any 5 for 1 mark each	5
(b)	6 Else a = 30/5 gets 2 marks	
	Else a = v/t gets 1 mark	3
(c)	9000 Else F = 6 × 1500 gets 2 marks	
	Else F = ma	
	gets 1 mark	3
(d)	 (i) Driver has forward momentum Which is conserved Giving drive relative forward speed to car for one mark each 	
		3
	(ii) Car stops in 75m gets 1 mark	
	W = F.d or 9000 × 75 gets 1 mark	

[17]

Q31.

(a) mass and velocity/speed multiplied for 1 mark each

2

3

(b) total momentum before and after collision are the same for 1 mark each

2

(c) (i) $M_AU_A + M_BU_B = (M_A + M_B)v$ $2 \times 6 = (2 + 1)v$ v = 4m/s

4

4

(ii) $1/2 \text{ mv}^2 \text{ (before)} - 1/2 \text{ mv}^2 \text{ (after)} 1/2 2.36 - 1/2 3.16 = 12$

for 1 mark each

for 1 mark each

[12]

Q32.

- (a) Throughout the question the equation M = mv is credited once only. This is the first time it appears. The mark scheme below assumes it will appear in (i).
 - (i) M = mv m x v sufficient not m x s, mass x speed = 1500 x 8 = 12 000 (see marking of calculations)

3

(ii) M = mv $M = 2000 \times 1 = 2000$ (see marking of calculations)

2

(iii) must be sum of (i) and (ii) 14 000 for 1 mark

1

(b) total mass = 3500 momentum = 14 000 (conserved) M = mv **or** v = 14 000/3500 v = 4

			5	
(c)	(i)	it reduces for 1 mark	1	
	(ii)	ke to sound/heat for 1 mark	1	[42]
Q33.				[12]
(a)	prod	duct of mass and velocity	1	
(b)	(i)	4kg or 4000g	1	
	(ii)	M = 8kgm/s or Ns for 3 marks		
		else M = 8 for 2 marks		
		else M – mv or 4 × 2 for 1 mark	3	
	(iii)	8 kgm/s (watch e.c.f.)	1	
	(iv)	v = 400 for 3 marks		
		else v = 8/0.02 for 2 marks		
		else M – mv, v – M/m or 8 = $0.02v$ for 1 mark	3	
	(v)	ke = 8 for 3 marks		
		else ke = $1/2$ (4 × 2^2) for 2 marks		
		else ke = 1/2 (mv²) for 1 mark	3	
	(vi)	transferred to heat and sound or does work against wood/pushing wood aside/deforming bullet	3	

Q34.

(a) ideas that greater speed means more kinetic energy gains 1 mark

but any evidence of the formula ½ mv²
 but making the case that kinetic energy depends on the speed squared gains 3 marks

or that $2^2 = 4$

3

(b) (i) any evidence of concept of momentum or mass x speed (or velocity) in words or figures e.g. 9.5 x 20 **or** 0.5 x 40 gains 1 mark

but correct values for momentum of lorry and car i.e. 190 and 20 [ignore units]

gains 2 marks

but initial momentum correctly calculated 170 or 190 – 20 gains 3 marks

THEN

evidence when calculating final speed of idea that momentum is conserved use of combined mass

each gain 1 mark

hut

17 [or 0.1 x figure for initial momentum] (NB direction <u>not</u> required)

gains 3 marks

6

(ii) <u>kinetic</u> energy is lost for 1 mark

[credit (some kinetic) energy transferred as heat/sound]
[NB Accept only answers in terms of energy as required by the question]

[10]

Q35.

(a) WX deceleration / speed decreasing / slowing down / negative acceleration

XY constant speed / steady speed not constant motion / slow speed

YZ acceleration / speed increasing / speeding up for 1 mark each

(b) distance = v x t or distance = 30 x 20
 gains 1 mark
 but distance = 600(m)
 gains 2 marks
 (c) acceleration = v / t or acceleration = 30 / 12

gains 1 mark

(if –30 / 12, allow negative sign here if not in the answer)

but

acceleration = $2.5 \text{ (m/s}^2\text{)}$ gains 2 marks

but

acceleration = -2.5 (m/s²) gains 3 marks

(d) in a crash / during hard braking car body stops / slows rapidly driver / passengers continue to move forward not thrown forward seatbelts provide backward force / keep them in their seats / restrain them to stop them hitting the windscreen / dashboard

(an alternative argument involving momentum is acceptable) for 1 mark each

4

2