

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

AQA AS & A LEVEL

Mark Scheme

3.2 Inorganic chemistry

www.exampaperspractice.co.uk

(a) $2NaBr + 2H_2SO_4 \longrightarrow Na_2SO_4 + Br_2 + SO_2 + 2H_2O$ Allow ionic equation $2Br^- + 2H_2SO_4 \longrightarrow Br_2 + SO_4^{2-} + SO_2 + 2H_2O$

1

Br ions are bigger than Cl ions

1

Therefore Br ions more easily oxidised / lose an electron more easily (than Clions)

1

(b) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3

All stages are covered and the explanation of each stage is generally correct and virtually complete. Stages 1 and 2 are supported by correct equations.

Answer communicates the whole process coherently and shows a logical progression from stage 1 to stage 2 and then stage 3. The steps in stage 3 are in a logical order.

5-6 marks

Level 2

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be out of order and incomplete.

3-4 marks

Level 1

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.

1-2 marks

Level 0

Insufficient correct chemistry to warrant a mark.

0 marks

Indicative chemistry content

Stage 1: formation of precipitates

- Add silver nitrate
- to form precipitates of AgCl and AgBr
- AgNO₃ + NaCl → AgCl + NaNO₃
- AgNO₃ + NaBr → AgBr + NaNO₃

Stage 2: selective dissolving of AgCl

- Add excess of dilute ammonia to the mixture of precipitates
- the silver chloride precipitate dissolves
- AgCl + 2NH₃ → Ag(NH₃)₂⁺ + Cl⁻

Stage 3: separation and purification of AgBr

- Filter off the remaining silver bromide precipitate
- Wash to remove soluble compounds
- Dry to remove water

6

(c)
$$Cl_2 + 2HO^- \longrightarrow OCl^- + Cl^- + H_2O$$

1

Cl⁻ is –1

Both required for the mark

[11]

[1]

3

(a) (i) $SrCl_2(aq) + Na_2SO_4(aq) \rightarrow SrSO_4(s) + 2NaCl(aq)$

Allow multiples, including fractions.

Allow ionic equations.

Lose this mark if any of the state symbols are missing or incorrect.

1

(ii) Add nitric acid to the mixture (until in excess)

Do not allow any suggestion that the solution is an emetic.

1

Filter (to isolate strontium sulfate)

1

(b) Insoluble barium sulfate is formed

Allow 'removes barium ions as a precipitate'.

1

(c) Add silver nitrate, then dilute ammonia (solution) M1

Do not allow answers which imply silver nitrate and ammonia are added at the same time.

Allow 'add silver nitrate, then concentrated ammonia (solution)'.

Can score M1 in the answer for M3

1

Cream precipitate M2

Allow 'off white precipitate'.

1

No visible change or precipitate dissolves slightly in dilute ammonia M3

Allow 'soluble / colourless solution / precipitate dissolves in concentrated ammonia'.

Allow 3 marks for:

Add dilute ammonia (solution), then silver nitrate M1

No visible change M2

Cream / off white precipitate with silver nitrate M3

r

[7]

4

(a) M1 acidified potassium dichromate or K₂Cr₂O₇ / H₂SO₄

OR K₂Cr₂O₇ / H⁺ **OR** acidified K₂Cr₂O₇

M2 (orange to) green solution **OR** goes green

M3 (solution) remains orange or no reaction or no (observed) change If no reagent or incorrect reagent in M1, CE = 0 and no marks for M1, M2 or M3

If incomplete / inaccurate attempt at reagent e.g. "dichromate" or "dichromate(IV)" or incorrect formula or no acid, penalise M1 only and mark on

For **M2** ignore dichromate described as "yellow" or "red" For **M3** ignore "nothing (happens)" or "no observation"

Alternative using KMnO₄ / H₂SO₄

M1 acidified potassium manganate(VII) / potassium permanganate or KMnO₄ / H₂SO₄

OR KMnO₄ / H⁺ OR acidified KMnO₄

M2 colourless solution **OR** goes colourless

M3 (solution) remains <u>purple</u> or no reaction or no (observed) change

For M1

If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, **penalise M1 only and mark on**

Credit alkaline KMnO₄ for possible full marks but **M2** gives brown precipitate or solution goes green

(b) **M1** (Shake with) Br₂ **OR** bromine (water) **OR** bromine (in CCl₄ / organic solvent)

M2 (stays) orange / red / yellow / brown / the same

OR no reaction **OR** no (observed) change

M3 decolourised / goes colourless / loses its colour / orange to colourless

If no reagent or incorrect reagent in M1, CE = 0 and no marks for M1, M2 or M3

If incomplete / inaccurate attempt at reagent (e.g. Br),

penalise M1 only and mark on

No credit for combustion observations; CE = 0

For M2 in every case

Ignore "nothing (happens)"

Ignore "no observation"

Ignore "clear"

OR as alternatives

Use KMnO₄ / H₂SO₄

M1 acidified potassium manganate(VII) / potassium permanganate OR KMnO₄ / H₂SO₄

OR KMnO₄ / H⁺ OR acidified KMnO₄

M2 (stays) purple or no reaction or no (observed) change

M3 decolourised / goes colourless / loses its colour

Use iodine

M1 iodine or l₂ / KI or iodine solution

M2 no change

M3 decolourised / goes colourless / loses its colour

Use concentrated sulfuric acid

M1 concentrated H₂SO₄

M2 no change

M3 brown

For M1, it must be a whole reagent and / or correct formula For M1 penalise incorrect attempt at correct formula, but mark M2 and M3

With potassium manganate(VII)

If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, **penalise M1 only and mark on**

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives <u>brown precipitate</u> or solution goes <u>green</u>

Apply similar guidance for errors in the formula of iodine or concentrated sulfuric acid reagent as those used for other reagents.

3

- (c) **M1** Any <u>soluble chloride</u> including hydrochloric acid (ignore concentration)
 - M2 white precipitate or white solid / white suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

- M1 Any soluble iodide including HI
- M2 <u>yellow precipitate</u> or <u>yellow solid / yellow suspension</u>

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

- M1 Any soluble bromide including HBr
- **M2** <u>cream precipitate</u> or <u>cream solid / cream suspension</u>

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

- M1 NaOH or KOH or any soluble carbonate
- M2 <u>brown precipitate</u> or <u>brown solid / brown suspension</u> with NaOH / KOH (<u>white precipitate / solid / suspension with carbonate</u>)

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If no reagent or incorrect reagent or insoluble chloride in M1, CE = 0 and no marks for M1, M2 or M3

Allow chlorine water

If incomplete reagent (e.g. chloride ions) or inaccurate attempt at formula of chosen chloride, or chlorine, **penalise M1 only and mark on**

For **M2** require the word "white" and some reference to a solid. Ignore "cloudy solution" OR "suspension" (similarly for the alternatives)

For M3

Ignore "nothing (happens)"
Ignore "no observation"
Ignore "clear" on its own
Ignore "dissolves"

(d) M1 Any soluble sulfate including (dilute or aqueous) sulfuric acid

M2 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

M3 white precipitate or white solid / white suspension

If no reagent or incorrect reagent or insoluble sulfate in M1, CE = 0 and no marks for M1, M2 or M3

Accept MgSO₄ and CaSO₄ but not barium, lead or silver sulfates

If concentrated sulfuric acid or incomplete reagent (e.g. sulfate ions) or inaccurate attempt at formula of chosen sulfate, **penalise M1 only and mark on**

For **M3 (or M2 in the alternative)** require the word "white" and some reference to a solid.

Ignore "cloudy solution" OR "suspension"

For M2 (or M3 in the alternative)

Ignore "nothing (happens)"

Ignore "no observation"

Ignore "clear" on its own

Ignore "dissolves"

OR as an alternative

M1 NaOH or KOH

M2 white precipitate or white solid / white suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If incomplete reagent (e.g. hydroxide ions) or inaccurate attempt at formula of chosen hydroxide, **penalise M1 only and mark on**

If M1 uses NH_3 (dilute or concentrated) **penalise M1 only and mark on**

F44

3

[12]

(a) M1 concentrated sulfuric acid OR c(onc) H₂SO₄

If no reagent or incorrect reagent in **M1, CE= 0** and no marks for **M2** or **M3**

M2 (cream solid) turns orange

OR orange / red / brown fumes / gas / vapour

If dilute sulfuric acid OR "aq" (alone) CE=0

M3 (yellow solid) turns black

OR purple fumes / gas / vapour

OR correct reference to H₂S observation (eg bad egg smell)

If H_2SO_4 / sulfuric acid given but not stated whether dilute or concentrated, penalise **M1** and mark on for **M2** and **M3** If incorrect formula for the acid, penalise **M1** but mark **M2** and **M3**

OR as an alternative

M1 concentrated ammonia OR c(onc) NH₃

If NH₃ / ammonia / aq ammonia given, but not stated as concentrated **OR** if dilute ammonia given, penalise **M1** but mark on for **M2** and **M3**Ignore "partially" and ignore "clear" in **M2**

M2 (cream solid) dissolves / solution formed

M3 precipitate remains / does not dissolve / insoluble **OR** no reaction / no change / (yellow solid) turns to white solid

If incorrect formula for ammonia, penalise **M1** but mark **M2** and **M3**

In **M3** for ammonia. ignore "nothing (happens)". ignore "no observation".

(b) M1 AgNO₃ **OR** silver nitrate **OR** any soluble silver salt

If no reagent **OR** incorrect reagent in **M1**, **CE= 0** and no marks for **M2 OR M3**

M2 white precipitate or white solid / white suspension

An insoluble silver salt OR Tollens' **OR** Ag **OR** ammoniacal silver nitrate or HCI / AgNO₃ **CE= 0** for the clip.

M3 remains colourless **OR** no reaction **OR** no (observed) change **OR** no precipitate

For **M1**

Credit acidified (**OR** HNO₃) silver nitrate for **M1** and mark on. If silver ions or incorrect formula for silver nitrate, penalise **M1** but mark **M2** and **M3**

Credit alternative test for nitrate ions

For M2

Ignore "cloudy solution" OR "suspension".

For M3

Ignore "nothing (happens)".

Ignore "no observation".

Ignore "clear".

Ignore "dissolves".

(c) M1 Br₂ **OR** bromine (water) **OR** bromine (in CCl₄ / organic solvent)

If no reagent or incorrect reagent in **M1**, **CE= 0** and no marks for **M2** or **M3**

Either Order

M2 (stays) Orange / red / yellow / brown / the sameOR no reaction OR no (observed) changeOR reference to colour going to cyclohexane layer

No credit for combustion observations; **CE=0** For **M2 in every case**. Ignore "nothing (happens)". Ignore "no observation". Ignore "clear".

M3 decolourised / goes colourless / loses its colour

With bromine (water)

For M1, it must be a whole reagent and / or correct formula. If oxidation state given in name, it must be correct.
For M1 penalise incorrect formula, but mark M2 and M3

OR as an alternative

Use KMnO₄/H₂SO₄

M1 acidified potassium manganate(VII) or KMnO₄/H₂SO₄ **OR** KMnO₄/ H⁺ **OR** acidified KMnO₄ M2 (stays) purple or no reaction or no (observed) change

With potassium manganate(VII) For M1

M3 <u>purple to colourless</u> solution *OR* goes <u>colourless</u>

If "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Credit alternative test using **iodine** (for **M1**) M2 (brown) to purple or accept no change, M3 colourless Credit alternative test using <u>concentrated</u> H₂ SO₄ M2 no change, M3 brown

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives brown precipitate or solution goes green.

(d) M1 Tollens' (reagent) OR ammoniacal silver nitrate OR a description of making Tollens'

(Ignore either AgNO₃ or $[Ag(NH_3)_2^*]$ or "the silver mirror test" on their own, but mark M2 and M3)

M2 silver mirror

OR <u>black solid / precipitate</u> (Ignore silver precipitate)

M3 (stays) colourless or no reaction or no (observed) change

If no reagent or incorrect reagent in M1, CE= 0 and no marks

for M2 or M3

For M3 in every case

Ignore "nothing (happens)". Ignore "no observation".

Alternative using Fehling's (solution)

M1 Fehling's (solution) or Benedict's solution

(Ignore Cu²⁺(aq) or CuSO₄ on their own, but mark M2 and M3)

M2 Red solid / precipitate (Credit Orange or brown solid)

M3 (stays) blue or no reaction or no (observed) change

With potassium dichromate(VI) For M1

If "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Alternative using K₂Cr₂O₇/H₂ SO₄

M1 acidified potassium dichromate or K₂Cr₂O₇/H₂SO₄

OR K₂Cr₂O₇/H⁺ OR acidified K₂Cr₂O₇

M2 (Orange to) green solution OR goes green

M3 (stays) Orange or no reaction or no (observed) change

For M3

Ignore dichromate described as "yellow" or "red".

With potassium manganate(VII)

For M1

If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise M1 but mark M2 and M3

Alternative using KMnO₄ /H₂ SO₄

M1 acidified potassium manganate(VII) or KMnO₄ /H₂ SO₄

OR KMnO₄ /H * OR acidified KMnO₄

M2 <u>purple to colourless</u> solution OR goes <u>colourless</u>

M3 (stays) purple or no reaction or no (observed) change

Credit alkaline / neutral KMnO₄ for possible full marks but **M2** gives <u>brown precipitate</u> or solution goes <u>green</u>.

(a) (i) **2**0

Ignore state symbols
Credit loss of electrons from LHS
Credit multiples

Do not penalise absence of charge on electron

(ii) +7 **OR** 7 **OR**
$$\lor$$
II **OR** + \lor II
Allow Mn^{+7} and 7+

(b) (i)
$$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2$$

OR

$$\frac{1}{2}CI_2 + Br^- \longrightarrow CI^- + \frac{1}{2}Br_2$$

One of these two equations <u>only</u> Ignore state symbols

(ii) (Turns to) <u>yellow / orange / brown</u> (solution)

Penalise "red / reddish" as the only colour Accept "red-brown" and "red-orange" Ignore "liquid"

Penalise reference to a product that is a gas or a precipitate

(iii) (Chlorine) gains electron(s) / takes electron(s) / accepts electron(s) (from the bromide ions)

OR

(Chlorine) causes another species (Br⁻) to lose electron(s)

Penalise "electron pair acceptor"
Not simply "causes loss of electrons"

1

1

1

1

1

(c) M1 2Cl₂ + 2H₂O
$$\longrightarrow$$
 4HCl + O₂ (4H⁺ + 4Cl⁻)

M2 Oxidation state -1

Ignore state symbols

Credit multiples

M2 consequential on HCl or CΓ which **must** be the only chlorine-containing product in the (un)balanced equation.

For **M2** allow Cl⁻¹ or Cl¹⁻ but **not** Cl⁻¹

(d) M1 The relative size (of the molecules / atoms)

Chlorine is <u>smaller</u> than bromine *OR* has fewer electrons / electron shells For *M1* ignore whether it refers to molecules or atoms.

OR It is smaller / It has a smaller atomic radius / it is a smaller molecule / atom (or converse)

CE=0 for the clip for reference to (halide) ions or incorrect statements about relative size Ignore molecular mass and M_r

M2 How size of the intermolecular force affects energy needed

Ignore shielding

The <u>forces between</u> chlorine / Cl_2 <u>molecules</u> are weak<u>er</u> (than the forces between bromine / Br_2 <u>molecules</u>)

(or converse for bromine)

OR chlorine / Cl₂ has <u>weaker / fewer / less</u> (VdW) <u>intermolecular forces / forces between molecules</u> (or converse for bromine)

QoL in M2 for clear reference to the difference in size <u>of the force between molecules</u>. Reference to Van der Waals forces alone is not enough.

Penalise M2 if (covalent) bonds are broken

2

[10]