

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

OCR AS & A LEVEL

Mark Schemes Module 2: Foundations in chemistry

www.exampaperspractice.co.uk

1. (i) 153 Eu has (2) more neutrons

ΩR

 153 Eu has 90 neutrons **AND** 151 Eu has 88 neutrons ✓

ALLOW There are a different number of neutrons
IGNORE Correct references to protons / electrons
DO NOT ALLOW Incorrect references to protons / electrons

(ii) (It has the) same number of protons **AND** electrons

OR

Both have 63 protons and 63 electrons ✓

ALLOW Same number of protons **AND** same electron configuration

DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)

[2]

1

2. (a) Mass of the isotope compared to 1/12th

mass of the atom compared to 1/12th ✓

(the mass of a) carbon-12 **OR** 12 C (atom) \checkmark

IGNORE Reference to average *OR* weighted mean (i.e. correct definition of relative atomic mass will score both marks)

ALLOW mass of a **mole** of the isotope/atom with 1/12th the mass of a **mole OR** 12 **g** of carbon-12 for two marks.

ALLOW 2 marks for:

'Mass of the isotope OR mass of the atom compared to ^{12}C atom given a mass of 12.0'

i.e. 'given a mass of 12' **OR** C12 is 12 communicates the same idea as 1/12th.'

ALLOW 12C OR C12

ALLOW 2 marks for:

mass of the isotope

mass of 1/12th mass of carbon-12

i.e. fraction is equivalent to 'compared to'

ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a **mole OR** 12 g of carbon-12.'

DO NOT ALLOW mass of 'ions' OR mass of element

(b) $(151 \times 47.77) + (153 \times 52.23)$ 100

OR

72.1327 + 79.9119

OR

152.0446 (calculator value) ✓

 $A_{\rm r} = 152.04 \checkmark$

ALLOW Correct answer for two marks

ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

[4]

3. (i) (atoms of the) same element **OR** same atomic no.

OR no. of protons

AND

with different numbers of neutrons **OR** different masses \checkmark

IGNORE 'same number of electrons'

DO NOT ALLOW 'different numbers of electrons'

DO NOT ALLOW 'different relative atomic masses'

DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons **OR** same atomic number

1

(ii) same (number of) electrons (in the outer shell)

OR

same **electron** configuration **OR** structure ✓

DO NOT ALLOW different number of protons

IGNORE 'same number of protons'

IGNORE 'they are both carbon' **OR** 'they are both the same element'

(iii) mass of the isotope compared to 1/12th

mass of the atom compared to 1/12th \checkmark

(the mass of a) carbon-12 **OR** 12 C (atom) \checkmark

IGNORE reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks)

ALLOW mass of a **mole** of the isotope/atom with 1/12th the mass of a **mole OR** 12 g of \checkmark carbon -12 \checkmark

ALLOW 2 marks for:

'mass of the isotope OR mass of the atom compared to ^{12}C atom given a mass of 12.0'

i.e. 'given a mass of 12' communicates the same idea as 1/12th.'

ALLOW 12C OR C12 ALLOW FOR 2 MARKS:

 $\frac{\textit{mass of the isotope}}{\textit{mass of 1/12th mass of carbon } - 12}$

i.e. fraction is equivalent to 'compared to'

ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, i.e.:

'mass of the isotope/mass of an atom compared with 1/12th the mass of a **mole OR** 12 g of carbon -12.'

2

[4]

4. (i)

	protons	neutrons	electrons
²⁴ Mg	12	12	12
²⁵ Mg	12	13	12

²⁴Mg line correct ✓

²⁵Mg line correct ✓ *mark by row*

5.

$\frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$ (ii) **OR** 18.8640 + 2.5275 + 2.9354OR 24.3269 🗸 $A_r = 24.33$ (to 4 sig figs) \checkmark **ALLOW** two marks for $A_r = 24.33$ with no working out ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. 24.3235 ★ gives ecf of 24.32 ✓ 2 The (weighted) mean mass of an atom OR (weighted) average mass of an atom ✓ relative to $1/12^{th}$ (the mass) \checkmark of (one atom of) 12 C \checkmark ALLOW The (weighted) mean mass OR (weighted) average mass of an atom OR average atomic mass ✓ compared with (the mass of) carbon-12 ✓ which is 12 ✓ For 1st marking point, ALLOW mean mass of the isotopes **OR** average mass of the isotopes Do **NOT ALLOW** the singular: isotope ALLOW mass of one mole of atoms ✓ compared to $1/12^{th}$ (the mass) of **one mole** / 12 g of carbon-12 ✓ mass of one mole of atoms✓ $1/12^{th}\checkmark$ the mass of one mole / 12 g of carbon-12 \checkmark 3 [7] (i) atoms of the same element with different numbers of neutrons/different masses (1) 1 ⁷⁹Br 35 protons, 44 neutrons, 35 electrons (1) (ii) ⁸¹Br 35 protons, 46 neutrons, 35 electrons (1) 2 (iii) $(1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5$ (1) 1 [4]

6. Molar mass of anhydrous calcium nitrate = 164.1 g mol^{-1} (1)

Ratio $Ca(NO_3)_2$: $H_2O = 69.50/164.1: 30.50/18$

or 0.4235 : 1.694 or 1 : 4 (1) Formula = $Ca(NO_3)_2 \cdot 4H_2O$ (1)

[3]

7. (a) (atoms of) same element/same atomic number..... with

different numbers of neutrons/different masses ✓

1

(b) 3

isotope	percentage composition		number of	
		protons	neutrons	electrons
⁸⁵ Rb	71 to 73	37	48	37
⁸⁷ Rb	27 to 29	37	50	37

mark must add

up to 100 ✓

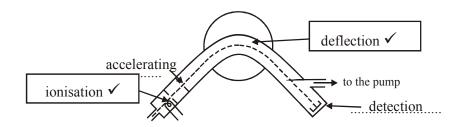
ie 1 mark for each atomic structure; 1 for % compositions.

$$A_r = \frac{(85 \times 72) + (87 \times 28)}{100} / 85.56$$

= $85.6 \checkmark 2$ nd mark for significant figures

2

71/29: 85.58 = 85.6


73/27: 85.54 = 85.5

(c) carbon-
$$12^{12}$$
C \checkmark

[7]

8. (i)

	protons	neutrons	electron	ıs	
25 Mg	12	13	12	✓	
26 Mg	12	14	12	\checkmark	2

(ii) $1s^2 2s^2 2p^6 3s^2 \checkmark$

$$24 \times 78.60/100 + 25 \times 10.11/100 + 26 \times 11.29/100$$

(iii) = 24.33 ✓ (calc value: 24.3269. This scores one mark)
 24.32 with no working, award 1 mark only.
 24.3 with no working, no marks (Periodic Table value)

2 **[5]**

9. (i) (atoms of) same element/same atomic number/number of protons with different numbers of neutrons/diff masses

1

1

(ii)

proton	neutron	electron		
relative mass 1	1	$\frac{1}{1840}$ /	negligible✓	
relative charge	+1	0	-1	✓
i.e. 1 n	nark for each corr	ect row		
for ele	ctron, accept 1/15	100 - 1/2000		
for cha	arges, accept +; 0;	· _		

[3]

- 10. (i) average atomic mass/weighted mean/average mass ✓ compared with carbon-12 ✓
 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 ✓
 - (ii) The mass of 1 mole of **atoms** of an element compared with 12 g \checkmark of carbon-12 \checkmark 3 $A_r = \frac{(121 \times 57.21) + (123 \times 42.79)}{100} / 121.8558 \checkmark$

11.

isotope	protons	neutrons	electrons
¹² C	6	6	6
¹³ C	6	7	6

12. (i) mass spectrometry ✓

(ii) mass of an isotope compared with carbon-12 ✓
1/12th of mass of carbon-12/on a scale where carbon-12 is
12 ✓

mass of 1 mole of the isotope/mass of 1 mole of carbon-12 is equivalent to the first mark

"mass of the isotope that contains the same number of atoms as are in 1 mole of carbon-12" \rightarrow 1 mark (mark lost because of mass units)

- (iii) $12 \times 95/100 + 13 \times 5/100 \text{ OR } 12.05 \checkmark$ = 12.1 (mark for significant figures) \checkmark (12.1 scores both marks)
- **13.** (a) (i) atoms of same element/same atomic number.... with different numbers of neutrons/different masses ✓ 1

(ii)	isotope	protons	neutrons	electrons
	⁴⁶ Ti	22	24	22 🗸
	⁴⁷ Ti	22	25	22 🗸

[5]

[5]

[2]

2

(b)
$$A_r = \frac{(46 \times 8.9) + (47 \times 9.8) + (48 \times 81.3)}{100} / 47.724$$

$$= 47.7 \checkmark$$
2
[5]

- 14. (i) ⁷⁹Br has two ✓ less neutrons than ⁸¹Br ✓
 (ii) ⁷⁹Br have same numbers of protons ✓
 and same number of electrons ✓
 [4]
- 15. isotope protons neutrons electrons nickel-58 28 30 28 nickel-60 28 32 28 34 nickel-62 28 28

For ecf, 3rd column same as first column.

- 16. (i) mass spectrometry ✓ mass spectrometer should also be credited
 (ii) average mass/weighted mean mass of an atom ✓
 - (ii) average mass/weighted mean mass of an atom ✓ compared with carbon-12 ✓
 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 ✓
 mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks
 "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" → 2 marks (mark lost because of mass units)
 - (iii) $63.0 \times 77.2/100 + 65.0 \times 22.8/100 / 63.456 \checkmark$ = 63.5 (mark for significant figures) \checkmark
 - (iv) copper/ Cu ✓ 1 [7]

[3]