

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme Module 2: Foundations in chemistry

www.exampaperspractice.co.uk

1. (i) The H⁺ ion in an (nitric) acid has been replaced by a metal ion **OR** by a Ca^{2+} ion \checkmark

DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question.

IGNORE references to replacement by NH_4^+ ions or positive ions.

ALLOW H OR Hydrogen for H⁺; DO NOT ALLOW Hydrogen atoms ALLOW Ca OR Calcium for Ca²⁺. DO NOT ALLOW Calcium atoms ALLOW 'metal' for 'metal ion

(ii) 2HNO₃(aq) + Ca(OH)₂(aq) → Ca(NO₃)₂ (aq)+ 2H₂O(l) Formulae ✓ Balance **AND** states ✓ *ALLOW multiples*

ALLOW (aq) **OR** (s) for Ca(OH) $_2$

(iii) Accepts a **proton OR** accepts H⁺ ✓

 $ALLOWH^+ + OH^- \rightarrow H_2O$

ALLOW OH $^-$ reacts with H^+ **OR** OH $^-$ takes H^+

ALLOW OH 'attracts' H^+ if 'to form water' is seen

DO NOT ALLOW OH $^+$ neutralises H^+ ('neutralises' is in the question)

2. (a) (i) Calculate correctly $\frac{0.0880 \times 25.0}{1000} = 2.20 \times 10^{-3} \text{ mol}$

OR 0.00220 mol ✓

ALLOW 0.0022 **OR** 2.2×10^{-3} mol

(ii) Calculates correctly $\frac{0.00220}{2} = 1.10 \times 10^{-3} \text{ mol}$

OR 0.00110 mol ✓

ALLOW 0.0011 **OR** 1.1×10^{-3} mol

ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

1

1

2

1

[4]

(iii)
$$\frac{0.00110 \times 1000}{17.60} = 0.0625 \text{ mol dm}^{-3}$$

OR $6.25 \times 10^{-2} \text{ mol dm}^{-3} \checkmark$

ALLOW 0.063 **OR** 6.3×10^{-2} mol dm⁻³

ALLOW ECF for answer (ii) × 1000/17.60

OR

ECF from (i) for answer (i)/2 \times 1000/17.60 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

(b) (i) (The number of) Water(s) of crystallisation ✓

IGNORE hydrated OR hydrous

(ii) 142.1 ✓

ALLOW 142

ALLOW M_r expressed as a sum

ALLOW ECF from incorrect M_r and x is calculated correctly

$$x = \frac{(322.1 - 142.1)}{18.0} = 10 \checkmark$$

ALLOW ECF values of x from nearest whole number to calculator value

ALLOW 2 marks if final answer is 10 without any working

[6]

3. (i) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \checkmark$

 $ALLOW 2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$

 $ALLOW NH_3 + H^+ \rightarrow NH_4^+$

ALLOW any correct multiple

IGNORE state symbols

(ii) when the H^+ in an acid is replaced by a metal ion **OR** an

ammonium ion **OR** a + ion \checkmark

ALLOW H for H^+ ;

ALLOW 'metal' for 'metal ion'

i.e.: H in an acid can be replaced by a metal

1

1

1

1

2

- (iii) accepts a proton **OR** accepts H⁺ ✓ *ALLOW* donates a lone pair *ALLOW* removes H⁺ *ALLOW* forms OH⁻ ions
- (iv) 132.1 ✓

 IGNORE units

 NO OTHER ACCEPTABLE ANSWER
- [4]

1

1

2

- 4. (i) $M(MgSO_4) = 120.4 \text{ OR } 120 \text{ (g mol}^{-1}) \checkmark$ $mol\ MgSO_4 = \frac{1.51}{120.4} = 0.0125 \ mol\ \checkmark$ $ALLOW\ 0.013 \ up\ to\ calculator\ value\ of\ 0.012541528\ correctly$ $rounded\ (from\ M = 120.4\ g\ mol^{-1})$ $ALLOW\ 0.013\ up\ to\ calculator\ value\ of\ 0.012583333\ correctly$ $rounded\ (from\ M = 120\ g\ mol^{-1})$ $ALLOW\ ecf\ from\ incorrect\ M\ i.e.\ 1.51 \div M$
 - (ii) $\frac{1.57}{18.0} = 0.0872(2) \text{ (mol) } \checkmark$ ALLOW 0.09 up to calculator value of 0.08722222
 - (iii) × = 7 ✓

 ALLOW ecf i.e. answer to (ii) ÷ answer to (i)

 ALLOW correctly calculated answer from 1 significant figure
 up to calculator value, ie, × does not have to be a whole
 number. Likely response = 6.95 ✓

 1

 [4]
- 5. (i) Ca(OH)₂ ✓

 IGNORE charges, even if wrong

 1

(ii) Ca(NO₃)₂ ✓

IGNORE charges, even if wrong

[2]

6. (i) Molar mass of $CaCO_3 = 100.1 \text{ g mol}^{-1}$ (1) 2.68/100.1 = 0.0268/0.027 (1)

2

1

(ii) $0.0268 \text{ mol} \times 24,000 = 643 \text{ cm}^3$ (1)

1

2

- (iii) moles $HNO_3 = 2 \times 0.0268$ = 0.0536 /0.054 mol (1) (i.e. answer to (i) × 2)
 - volume of HNO₃ = $0.0536 \times 1000/2.50 = 21.4 \text{ cm}^3$ (1)

[5]

- 7. (i) MgO has reacted with $CO_2 \checkmark 1$
 - (ii) Solid dissolves / disappears ✓ Fizzing / bubbles ✓ MgO + 2HCl → MgCl₂ + H₂O ✓

2

 $MgCO_3 + 2HCl \rightarrow MgCl_2 + CO_2 + H_2O\checkmark$

3

both reactions form magnesium chloride/MgCl₂ ✓

[6]

8. (i) $CaCO_3$ (s) + $2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O$ (l)

$$CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l)$$

each balanced equation 1 mark (2)

all state symbols (1)

3

- (ii) CaCO₃ fizzes/ gas given off/ gas evolved / carbon dioxide evolved (1)

[4]

[2]

9. (i) a proton donor ✓

1

(ii) $MgO + 2HCl \rightarrow MgCl_2 + H_2O \checkmark$

10. CaCO₃ reacts with (or neutralises) HC $l \checkmark$ (or CaCO₃ + HCl in an equation)

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 \checkmark$$
 (correct equation would score both marks)

[2]

- 11. (i) as a base (1) accepts a proton/H+/ neutralises an acid/ reacts with acid to form salt/ has a lone pair of electrons (1)
- 2

(ii) fertiliser (1)

1

1

(iii) manufacture of explosives/ dyes/ nitric acid/ fibres/ ammonium nitrate/ urea/ refrigeration/ cleaning agents/ fertiliser (if not allowed in (ii) (1)

[4]

12. (i) fizzing/gas/hydrogen evolved *or* Mg dissolves/disappears ✓ [an incorrect observation negates this mark]

1

2

(ii) $2HCl + Mg \rightarrow MgCl_2 + H_2$

[correct formula for MgC l_2 . Allow equation with HI/MgI $_2$ instead of HCl] \checkmark

[balancing: e.g. $2HCl + 2Mg \rightarrow 2MgCl + H_2$ will get this mark but not the 1^{st}] \checkmark

[3]

- 13. No mark scheme available
- 14. No mark scheme available