

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **51 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

Percentage

%

www.exampaperspractice.co.uk

Score

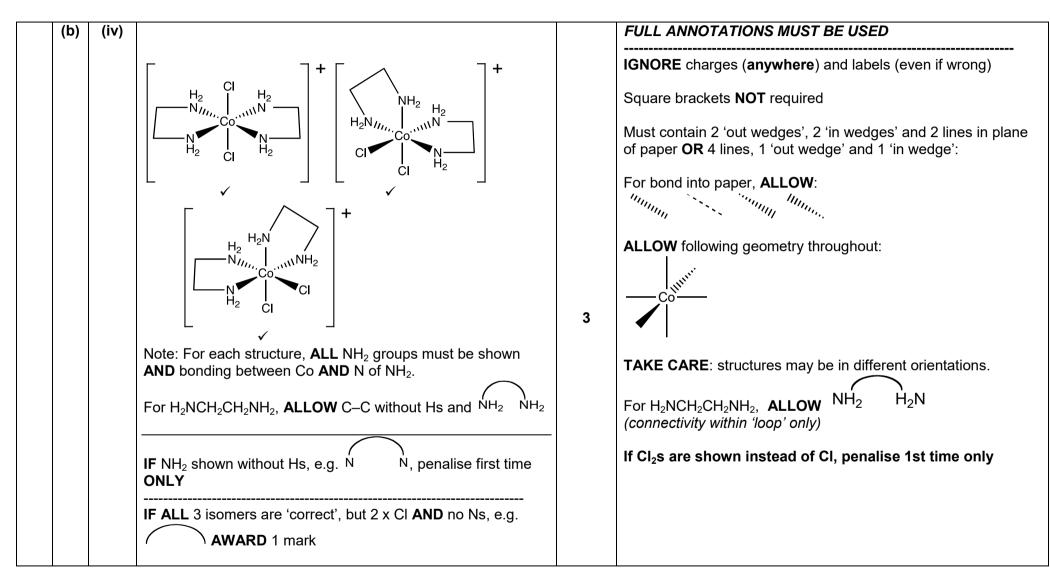
/43

C	Questi	ion	Answer	Marks	Guidance	
1	(a)		(+)5 ✓	1	ALLOW 5+ OR V OR Cr ⁵⁺	
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples Any correct equation for a reaction catalysed by a transition element, compound or ion AND transition element, compound or ion (by formula or name) ✓	1	$\begin{array}{l} \textbf{EXAMPLES} \\ \textbf{N}_2 + 3\textbf{H}_2 &\rightleftharpoons 2\textbf{NH}_3 \text{ (allow } \rightarrow \textbf{) } \textbf{AND } Fe/iron \text{ oxide} \\ 2SO_2 + O_2 &\rightleftharpoons 2SO_3 \text{ (allow } \rightarrow \textbf{) } \textbf{AND } V_2O_5/Pt \\ 2CO + 2\textbf{NO} \rightarrow 2CO_2 + \textbf{N}_2 \textbf{ AND } Pt/Pd/Rh/Au \\ \text{Equation for any alkene } + \textbf{H}_2 \rightarrow alkane \textbf{ AND } Ni/Pt/Pd \\ \textbf{C}_6\textbf{H}_6 + \textbf{Cl}_2 \rightarrow \textbf{C}_6\textbf{H}_5\textbf{Cl} + \textbf{HCl} \textbf{ AND } Fe/Fe\textbf{Cl}_3/Fe^{3+} \\ \textbf{C}_6\textbf{H}_6 + \textbf{Br}_2 \rightarrow \textbf{C}_6\textbf{H}_5\textbf{Br} + \textbf{HBr} \textbf{ AND } Fe/Fe\textbf{Br}_3/Fe^{3+} \\ 2\textbf{H}_2O_2 \rightarrow 2\textbf{H}_2O + O_2 \textbf{ AND } \textbf{MnO}_2 \end{array}$	
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) ✓ NOTE: Metal ion not required as Ni ³⁺ is in the question	1	For other examples, CHECK with TL ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds	
1	(c)	(ii)	$C_3H_{10}N_2 \checkmark$	1	ALLOW in any order IGNORE structure	
1	(c)	(iii)	<pre>MARK INDEPENDENTLY H₂NCH₂CH₂CH₂NH₂ ✓ Each N OR each NH₂ OR amine group has a lone pair/electron pair OR lone pairs shown on N atoms in structure ✓</pre>	2	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW H₂NCH₂CH(CH₃)NH₂ OR H₂NCH(CH₂CH₃)NH₂ ALLOW secondary or tertiary diamines or mixture IGNORE complex ion For other examples, CHECK with TL 	

(Question		Answer	Marks	Guidance
1	(c)	(iv)	6 ✓	1	
1	(c)	(v)	3–D diagrams of BOTH optical isomers required for the mark	1	In this part, Charge AND Square brackets NOT required IGNORE N or attempts to draw structure of bidentate ligand Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
1 (d)	Correct balanced equation $Cu^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Cu(OH)_{2}(s) \checkmark$ state symbols not required Observation blue precipitate/solid \checkmark REACTION OF Cu^{2+} WITH excess NH_3(aq)	2	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Cu^{2+} + 2NaOH \rightarrow Cu(OH)_2 + 2Na^+$ $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$
	Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O \checkmark$ Observation deep/dark blue (solution) \checkmark	2	 IGNORE [Cu(NH₃)₄]²⁺ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H₂O)₆]²⁺ DO NOT ALLOW deep blue precipitate for observation
1 (d)	REACTION OF Cu^{2+} WITH HCl(aq)Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4Cl^- \longrightarrow [CuCl_4]^{2-} + 6H_2O \checkmark$ Observationyellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $\operatorname{CuCl_4^{2-}}$ i.e. no brackets OR $\operatorname{Cu(Cl)_4^{2-}}$ ALLOW $[\operatorname{Cu(H_2O)_6}]^{2^+} + 4\operatorname{HCI} \longrightarrow [\operatorname{CuCl_4}]^{2^-} + 6\operatorname{H_2O} + 4\operatorname{H^+}$ IGNORE $\operatorname{Cu^{2^+}} + 4\operatorname{Cl^-} \longrightarrow \operatorname{CuCl_4^{2^-}}$ ALLOW green–yellow OR yellow–green DO NOT ALLOW yellow precipitate for observation

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
	Correct balanced equation $Co^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Co(OH)_{2}(s) \checkmark$ state symbols not required Observation blue precipitate/solid \checkmark	2	ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations,e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$ ALLOW any shade of blue
1 (d)	REACTION OF Co²⁺ WITH excess NH₃(aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2+} + 6H_2O \checkmark$		IGNORE changes in colour over time IGNORE initial precipitation of Co(OH) ₂ ALLOW any shade of brown or yellow
	Observation brown/yellow (solution) ✓	2	DO NOT ALLOW brown/yellow precipitate for observation
1 (d)	REACTION OF Co²⁺ WITH HCI(aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 4Cl^- \longrightarrow [CoCl_4]^{2-} + 6H_2O \checkmark$ Observation blue (solution) \checkmark	2	IGNORE mention of different concentrations of HCl ALLOW $\operatorname{CoCl_4^{2-}}$ i.e. no brackets OR $\operatorname{Co(Cl)_4^{2-}}$ ALLOW $[\operatorname{Co(H_2O)_6}]^{2+} + 4\operatorname{HCl} \longrightarrow [\operatorname{CoCl_4}]^{2-} + 6\operatorname{H_2O} + 4\operatorname{H^+}$ IGNORE $\operatorname{Co^{2+}} + 4\operatorname{Cl^-} \longrightarrow \operatorname{CoCl_4^{2-}}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation
	Total	14	



(Question	Answer	Marks	Guidance
2	(a)			FULL ANNOTATIONS MUST BE USED
		(Transition element) has an ion with an incomplete/partially- filled d sub-shell/d-orbital ✓		ALLOW capital 'D' within definition DO NOT ALLOW d shell
		Scandium/Sc and zinc/Zn are not transition elements ✓		ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements This can be from anywhere in the overall response in terms of Sc, Sc ³⁺ , Zn, Zn ²⁺ OR incorrect charges, i.e. only Sc ⁺ , Sc ²⁺ , Zn ⁺
		Electron configurations of ions Sc ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓		In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently
		Zn ²⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ✓		ALLOW 4s ⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions
				ALLOW for Sc ³⁺ : Sc forms a 3+ ion; ALLOW Sc ⁺³ ALLOW for Zn ²⁺ : Zn forms a 2+ ion; ALLOW Zn ⁺²
		Sc ³⁺ AND d sub-shell empty / d orbital(s) empty \checkmark Note: Sc ³⁺ must be the ONLY scandium ion shown for this mark		ALLOW Sc ³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' (<i>in definition</i>)
		Zn ²⁺ AND d sub-shell full /ALL d-orbitals full \checkmark Note : Zn^{2+} must be the ONLY zinc ion shown for this mark	6	DO NOT ALLOW 'd sub-shell is incomplete' (in definition)

(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ³⁺ ✓ DO NOT ALLOW metal (complex contains Co ³⁺)		 ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' <i>Two is required for 1st marking point</i> <i>Two can be implied using words such as 'both' or 'each'</i> For metal ion, ALLOW transition (metal) ion
		Electron/lone pair on N OR NH₂ (groups) ✓	2	Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
(b)	(ii)	[Co(H ₂ NCH ₂ CH ₂ NH ₂) ₂ Cl ₂] ⁺ ✓	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square bracketsALLOW $[Co(C_2H_8N_2)_2Cl_2]^+$ OR $[CoC_4H_{16}N_4Cl_2]^+$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)IGNORE $[Co(en)_2Cl_2]^+$ simplifies questionWithin formula, ALLOW(Cl)_2, (Cl_2)ALLOW COWithin the context of the question, CO is Co
(b)	(iii)	6 ✓	1	

(c)	(i)	O ₂ /oxygen bonds to Fe ²⁺ /Fe(II) ✓ Fe ²⁺ /Fe(II) essential for 1st marking point (When required,) O ₂ substituted OR O ₂ released ✓ Fe ²⁺ not required for 2nd marking point (e.g. IGNORE Fe)	2	ASSUME that 'it' refers to oxygen ALLOW O_2 binds to Fe^{2+} OR O_2 donates electron pair to Fe^{2+} OR O_2 is a ligand with Fe^{2+} IGNORE O_2 reacts with Fe^{2+} OR O_2 is around Fe^{2+} ALLOW bond to O_2 breaks when O_2 required OR H_2O replaces O_2 OR vice versa ALLOW CO_2 replaces O_2 OR vice versa ALLOW O_2 bonds/binds reversibly
(c)	(ii)	$(K_{stab} =) \frac{[HbO_2(aq)]}{[Hb(aq)] [O_2(aq)]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
(C)	(iii)	Both marks require a comparison		
		Stability constant/ K_{stab} value with CO is greater (than with complex in O ₂) \checkmark		IGNORE (complex with) CO is more stable
		(Coordinate) bond with CO is stronger (than O₂) OR CO binds more strongly ✓	2	ALLOW bond with CO is less likely to break (than O_2) OR CO is a stronger ligand (than O_2) OR CO has greater affinity for ion/metal/haemoglobin (than O_2)
				ALLOW CO bond formation is irreversible OR CO is not able to break away
				IGNORE CO bonds more easily
		Tatal	40	OR CO complex forms more easily
		Total	18	

G	Question		er	Marks	Guidance
3	(a)		$2Fe + 3Cl_2 \longrightarrow 2FeCl_3 \checkmark$	1	ALLOW 2Fe + $3Cl_2 \longrightarrow Fe_2Cl_6$ ALLOW multiples, e.g. Fe + $1\frac{1}{2}Cl_2 \longrightarrow FeCl_3$ IGNORE state symbols DO NOT ALLOW 2Fe + $3Cl_2 \longrightarrow 2Fe^{3+} + 6Cl^-$
	(b)		Fe^{3+} + $3OH^- \longrightarrow Fe(OH)_3 \checkmark$	1	IGNORE state symbols ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$ ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(OH)_3 + 6H_2O$
	(c)	(i)	$2[Fe(H_2O)_6]^{3+} + Zn \longrightarrow 2[Fe(H_2O)_6]^{2+} + Zn^{2+}$ All chemical species correct (IGNORE e ⁻ for 1st mark) \checkmark Balancing with '2' in front of both Fe complex ions \checkmark	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: $2Fe^{3+} + Zn \longrightarrow 2Fe^{2+} + Zn^{2+}$
		(ii)	redox ✓	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $[Fe(CN)_6]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \longrightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3– state symbols not required	2	ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^- \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ ALLOW ECF for an equation showing formation of $[Fe(CN)_6]^{4^-} \text{ from } [Fe(H_2O)_6]^{2^+}:$ $[Fe(H_2O)_6]^{2^+} + 6CN^- \longrightarrow [Fe(CN)_6]^{4^-} + 6H_2O$ Notice different charges on complex ions: LHS 2+, RHS 4–
		(ii)	ligand substitution ✓	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Question	er	Marks	Guidance
(e)	F and G : $\begin{bmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. $\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $
	3– charge outside brackets of BOTH isomers AND NO charges shown on Fe or O within brackets Note : This mark is only available from structures with three bidentate ligands bonded to Fe via two Os on each ligand ✓		Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper. For bond into paper, ALLOW :
(f)	FeO₄ ^{2−} ✓	1	Formula AND charge needed ALLOW other 2– ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW $Fe_2O_7^{2^-}$, $Fe_3O_{10}^{2^-}$, etc.
	Total	12	

G	Quest	ion	er	Marks	Guidance
4	(a)		(1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ 4s ² ✓ (1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ ✓	2	ALLOW 4s before 3d, i.e. $1s^22s^22p^63s^23p^64s^23d^8$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. $1s_22s_22p_63s_23p_63d_84s_2$ $1s^22s^22p^63s^23p^64s^23D^8$ For Ni ²⁺ ALLOW 4s ⁰ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) ✓	1	
		(ii)	4 ✓	1	
		(iii)	(Each) DMG has 1– charge which cancel 2+ charge on Ni ²⁺ ✓	1	ALLOW $2 \times -1 + 2 = 0$ For Ni ²⁺ , ALLOW Ni has an oxidation number of (+)2 ALLOW Ni ²⁺ cancelled out by 2 DMG ⁻ ALLOW 'balanced' for cancelled
		(iv)	$\begin{array}{c} H_{3}C \\ C \\ H_{3}C \\ C \\ H \\ $	1	ALLOW OH for O—H ALLOW CH ₃ — DO NOT ALLOW —H—O

(c)Marks are for correctly calculated values amount of Ni amount Ni(DMG)2 OR amount hydrated salt OR amount Ni2* $= \frac{2.57}{288.7} = 8.9(0) \times 10^{-3} \text{ mol } \checkmark$ 7 maxANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem.Marks are for correctly calculated values amount Ni(DMG)2 OR amount hydrated salt OR amount Ni2* $= \frac{2.57}{288.7} = 8.9(0) \times 10^{-3} \text{ mol } \checkmark$ 7 maxANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem.Marks are for correctly calculated values $= \frac{2.57}{288.7} = 8.9(0) \times 10^{-3} \text{ mol } \checkmark$ 7 maxANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem.Marks are for correctly calculated values $= \frac{2.50}{8.90 \times 10^{-3}} = 8280.9 (g mol^{-1}) \checkmark$ 7 maxAnnother method, consult your TLM(anhydrous salt) = $\frac{2.50}{8.90 \times 10^{-3}} = 155.0 (g mol^{-1}) \checkmark$ His problem.IF candidate attempts calculation via another method, consult your TLM(anhydrous salt) = $\frac{1.32}{18.0} = 1.38 = 155.0 (g mol^{-1}) \checkmark$ ALLOW numerical answers 280.8 - 280.9 (ALLOW 281) IGNORE further figuresM(hydrated salt) = $\frac{1.12}{18.0} = 6.2(2) \times 10^{-2}$ OR 280.9 - 155.0 $-125.9 \checkmark$ ALLOW numerical answers 125.7 - 125.9 (ALLOW 126)ECF answer above $\frac{1.12}{18.0} = 6.2(2) \times 10^{-3} = 7$ OR $\frac{125.9}{18.0} = 7 \checkmark$ AnionAllow numerical answers 125.7 - 125.9 (ALLOW 126)Molar mass of anion = 280.9 - (58.7 + 7 x 18) = 96.1 (g mol^{-1}) \bigcirc Molar mass of anion = 155.0 - 58.7 = 96.3 (g mol^{-1}) \checkmarkToMolar mass of anion a ist is NISO ₄ +7H ₂ O \checkmark Anoto Formula of salt	Question	er	Marks	Guidance
Formula of salt is NiSO₄•7H₂O ✓		Marks are for correctly calculated values amount of Ni		 ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8 – 280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0 – 155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g' applies to H₂O unless contradicted ALLOW numerical answers 125.7 – 125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~7, e.g. 6.99
			13	