

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **67 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 6: Organic chemistry and analysis

Percentage

%

www.exampaperspractice.co.uk

Score

/56

F324: Rings, Polymers and Analysis <u>4.1.2 Carbonyl Compounds /56</u>

1. (a) (i) <u>silver mirror</u> \checkmark

ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey

(ii) HOCH₂COOH ✓
 ALLOW CH₂OHCOOH OR CH₂OHCO₂H OR HOCH₂CO₂H
 OR displayed OR skeletal formula OR HOCH₂COO⁻
 DO NOT ALLOW C₂H₄O OR 2-hydroxyethanoic acid

(b) HOCH₂CHO + 3[O] \rightarrow HOOCCOOH + H₂O reagents \checkmark both products \checkmark

s ✓ both products ✓ ALLOW displayed/skeletal formula/COOHCOOH ✓✓ if molecular formula used $C_2H_4O_2 + 3[O] \rightarrow C_2H_2O_4 + H_2O$ max = 1 ✓ Any correctly balanced equation for partial oxidation can score 1 mark ✓ HOCH_2CHO + [O] → HOCH_2COOH OR HOCH_2CHO + 2[O] → OHCCOOH + H_2O OR HOCH_2CHO + [O] → OHCCHO + H_2O OR HOCH_2CHO + 2[O] → HOOCCHO + H_2O

2

1

1

(c) (i) HOCH₂CH₂OH \checkmark

ALLOW $HO(CH_2)_2OH$ **OR** $(CH_2OH)_2$ **OR** skeletal formula **OR** displayed formula **DO NOT ALLOW** molecular formula $(C_2H_6O_2)$

1

(ii) curly arrow from H⁻ to $C^{\delta^+} \checkmark$

dipoles and curly arrow from C=O bond to O \checkmark

ALLOW curly arrow to C even if dipole missing or incorrect

intermediate \checkmark

curly arrow from intermediate to H $^{\delta+}$ in H₂O/ H⁺ and if H₂O is used it must show the curly arrow from the O–H bond to the O \checkmark

lone pairs are not essential

ALLOW maximum of 3 marks if incorrect starting material is used

Alternative 1

Alternative 3 scores all 4 marks even though the intermediate not shown

[9]

4

(b)	recrystallise /purify (the precipitate) (1)				
	mea	sure melting point (1)			
	com	pare with known values (1)	3	[9]	
(a)	(i)	heat with: Tollens' reagent / ammoniacal silver nitrate (1)			
		to give: silver mirror / precipitate (1)	2		
	(ii)	aldehydes can be oxidised to a carboxylic acid ora / aldehydes can reduce Ag^+ to Ag (1)	1		
(b)	(i)	CH ₃ CH=CHCH ₂ OH (1) (either stereoisomer)	1		
	(ii)	reduction / redox / addition (1) (NOT hydrogenation)	1		
(c)	C ₄ H	$I_6O + 5O_2 \rightarrow 4CO_2 + 3H_2O$ (1)	1	[6]	

5. (a)

4.

curly arrow from O of OH to C (1) dipole on C=O and curly arrow breaking C=O (1) structure of the intermediate (1) curly arrow from O (of the correct intermediate) ... to H of H₂O (1) (allow O to H⁺ ion here) curly arrow breaking the H–O bond in H₂O (1)

5

(b)	one mark for the correct answer to each step below with ecf throughout steps may come in any order				
	one week's supply = $21 \times \text{dose}(1)$	5.25 g / 0.0317mol			
	mass of trichloroethanal = $0.891 \times \text{mass}$ of chloral hydrate (1)	4.68 g (223mg if done first)			
	60% yield = mass/moles x 100/60 (1)	7.8(0 g)	3		
	common errors for two marks are: 9.82 g (mass ratio upside down) 8.75 g (mass ratio not done) 2.60 g (3× not done), 1.11 g (7× not done), 0.371g (21× not done) 7798 g (mg to g not done) <i>etc</i> .				

1

1

1

2

2

1

[1]

[2]

[8]

7. (i)

6.

 $CCl_3CH(OH)_2 + [O] \rightarrow CCl_3COOH + H_2O$ (1)

(ii)	$C_{14}H_{10}O_2 + 4[H] \rightarrow C_{14}H_{14}O_2$ (1)
	allow ecf from (i)

8. (i)

a correct skeletal aldehyde is shown on C1 (1) rest of the skeletal structure (C_2-C_{10}) correct (1)

(ii)
$$C_9H_{15}CH_2OH + [O] \rightarrow C_9H_{15}CHO (1) + H_2O (1)$$

NOT COH,
allow $C_{10}H_{16}O$

9. (i) aldehyde / C=O / carbonyl (1)

For more help please visit our website www.exampaperspractice.co.uk

[4]

(ii) $C_6H_5CHCHCHO + 2[H] \rightarrow C_6H_5CHCHCH_2OH$ (1) allow $C_9H_{10}O$

[2]

1

8

10. method

silver nitrate (1)
ammonia / ammoniacal (1)
warm / heat (1)
silver (mirror) / brown ppt forms (1)

explanation

silver ions <u>reduced</u> / $Ag^+ + e^- \rightarrow Ag(1)$ aldehyde <u>oxidised</u> to a carboxylic acid (1) correct structure – eg C₆H₅CHCHCOO⁻/COOH (1)

quality of written communication

mark for correct spelling, punctuation and grammar in at least two sentences (1)

[8]