

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 51 Minutes

Score

/43

Percentage

%

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

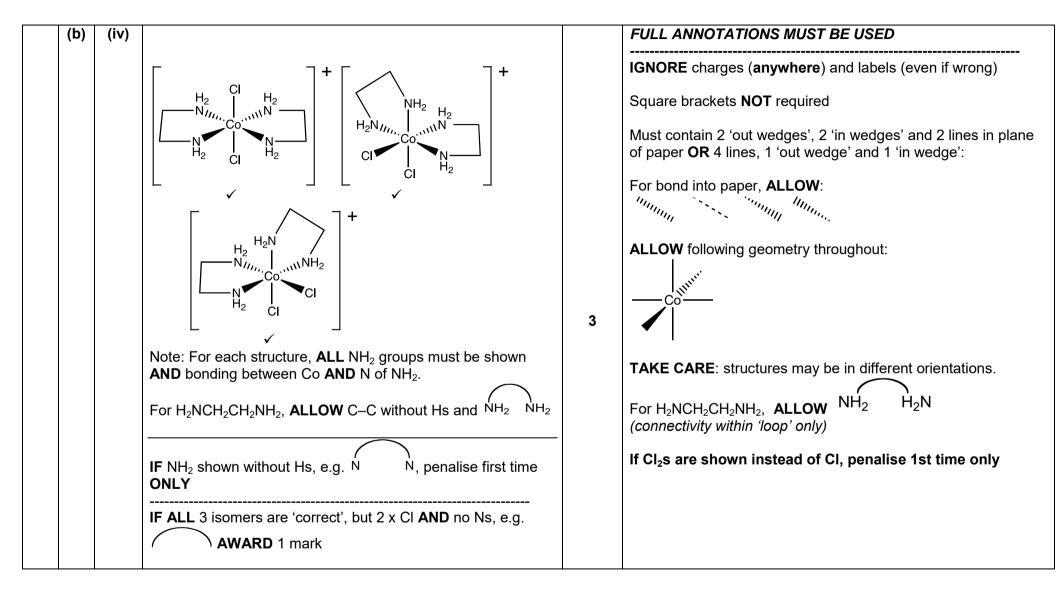
www.exampaperspractice.co.uk

C	Question		Answer	Marks	Guidance
1	1 (a)		(+)5 ✓	1	ALLOW 5+ OR V OR Cr ⁵⁺
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples	1	EXAMPLES $N_2 + 3H_2 \Rightarrow 2NH_3 \text{ (allow } \rightarrow) \text{ AND } \text{Fe/iron oxide}$ $2SO_2 + O_2 \Rightarrow 2SO_3 \text{ (allow } \rightarrow) \text{ AND } \text{V}_2\text{O}_5/\text{Pt}$ $2CO + 2NO \rightarrow 2CO_2 + N_2 \text{ AND } \text{Pt/Pd/Rh/Au}$ Equation for any alkene + $H_2 \rightarrow$ alkane AND Ni/Pt/Pd $C_6H_6 + Cl_2 \rightarrow C_6H_5\text{Cl} + \text{HCl AND } \text{Fe/FeCl}_3/\text{Fe}^{3+}$ $C_6H_6 + \text{Br}_2 \rightarrow C_6H_5\text{Br} + \text{HBr AND } \text{Fe/FeBr}_3/\text{Fe}^{3+}$ $2H_2O_2 \rightarrow 2H_2O + O_2 \text{ AND } \text{MnO}_2$ For other examples, CHECK with TL
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) ✓ NOTE: Metal ion not required as Ni³+ is in the question	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds
1	(c)	(ii)	C ₃ H ₁₀ N ₂ ✓	1	ALLOW in any order IGNORE structure
1	(c)	(iii)	MARK INDEPENDENTLY		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW H ₂ NCH ₂ CH(CH ₃)NH ₂ OR H ₂ NCH(CH ₂ CH ₃)NH ₂ ALLOW secondary or tertiary diamines or mixture
			Each N OR each NH ₂ OR amine group has a lone pair/electron pair OR lone pairs shown on N atoms in structure ✓	2	IGNORE complex ion For other examples, CHECK with TL

0	uesti	ion	Answer	Marks	Guidance
1	(c)	(iv)	6 ✓	1	
1	(c)	(v)	3–D diagrams of BOTH optical isomers required for the mark AND AND	1	In this part, Charge AND Square brackets NOT required IGNORE N or attempts to draw structure of bidentate ligand Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu ²⁺ REACTION OF Cu ²⁺ with NaOH(aq)		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
	Correct balanced equation Cu ²⁺ (aq) + 2OH ⁻ (aq) → Cu(OH) ₂ (s) ✓ state symbols not required Observation blue precipitate/solid ✓	2	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Cu^{2+} + 2NaOH \rightarrow Cu(OH)_2 + 2Na^+$ $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, e.g. $L_2^{2+} + 2Na^+ \rightarrow L_2^{2+} \rightarrow L_2^{$
1 (d)	REACTION OF Cu^{2+} WITH excess NH_3 (aq) Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O \checkmark$ Observation deep/dark blue (solution) \checkmark	2	IGNORE initial precipitation of Cu(OH)₂ IGNORE [Cu(NH₃)₄]²+ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H₂O)₆]²+ DO NOT ALLOW deep blue precipitate for observation
1 (d)	REACTION OF Cu^{2+} WITH HCI(aq) Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4CI^- \longrightarrow [CuCl_4]^{2-} + 6H_2O \checkmark$ Observation yellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $CuCl_4^{2-}$ i.e. no brackets OR $Cu(Cl)_4^{2-}$ ALLOW $[Cu(H_2O)_6]^{2+} + 4HCl \longrightarrow [CuCl_4]^{2-} + 6H_2O + 4H^+$ IGNORE $Cu^{2+} + 4Cl^- \longrightarrow CuCl_4^{2-}$ ALLOW green—yellow OR yellow—green DO NOT ALLOW yellow precipitate for observation

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
	Correct balanced equation Co ²⁺ (aq) + 2OH ⁻ (aq) → Co(OH) ₂ (s) ✓ state symbols not required Observation blue precipitate/solid ✓	2	ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, e.g. $A = A + A + A + A + A + A + A + A + A + $
1 (d)	REACTION OF Co ²⁺ WITH excess NH ₃ (aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2+} + 6H_2O \checkmark$ Observation		IGNORE changes in colour over time IGNORE initial precipitation of Co(OH)₂ ALLOW any shade of brown or yellow
1 (d)	brown/yellow (solution) \checkmark REACTION OF Co ²⁺ WITH HCl(aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 4Cl^- \longrightarrow [CoCl_4]^{2-} + 6H_2O \checkmark$ Observation blue (solution) \checkmark	2	DO NOT ALLOW brown/yellow precipitate for observation IGNORE mention of different concentrations of HCI ALLOW $CoCl_4^{2^-}$ i.e. no brackets OR $Co(Cl)_4^{2^-}$ ALLOW $[Co(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CoCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Co^{2^+} + 4Cl^- \longrightarrow CoCl_4^{2^-}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation
	Total	14	



Question	Answer	Marks	Guidance
2 (a)	/T		FULL ANNOTATIONS MUST BE USED
	(Transition element) has an ion with an incomplete/partially-filled d sub-shell/d-orbital ✓		ALLOW capital 'D' within definition DO NOT ALLOW d shell
	Scandium/Sc and zinc/Zn are not transition elements ✓		ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements This can be from anywhere in the overall response in terms of
			Sc, Sc ³⁺ , Zn, Zn ²⁺ OR incorrect charges, i.e. only Sc ⁺ , Sc ²⁺ , Zn
	Electron configurations of ions Sc ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓		In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently
	Zn^{2+} AND $1s^22s^22p^63s^23p^63d^{10}$ \checkmark		ALLOW 4s ⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions
			ALLOW for Sc ³⁺ : Sc forms a 3+ ion; ALLOW Sc ⁺³ ALLOW for Zn ²⁺ : Zn forms a 2+ ion; ALLOW Zn ⁺²
	Sc ³⁺ AND d sub-shell empty / d orbital(s) empty ✓ Note : Sc ³⁺ must be the ONLY scandium ion shown for this mark		ALLOW Sc ³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' (in definition)
	Zn ²⁺ AND d sub-shell full / ALL d-orbitals full ✓ Note : Zn ²⁺ must be the ONLY zinc ion shown for this mark	6	DO NOT ALLOW 'd sub-shell is incomplete' (in definition)

(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ³⁺ ✓ DO NOT ALLOW metal (complex contains Co ³⁺)		ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' Two is required for 1st marking point Two can be implied using words such as 'both' or 'each' For metal ion, ALLOW transition (metal) ion
		Electron/lone pair on N OR NH₂ (groups) ✓	2	Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
(b)	(ii)	[Co(H₂NCH₂CH₂NH₂)₂Cl₂] ⁺ ✓	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square brackets ALLOW $[Co(C_2H_8N_2)_2Cl_2]^+$ OR $[CoC_4H_{16}N_4Cl_2]^+$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE $[Co(en)_2Cl_2]^+$ <i>simplifies question</i> Within formula, ALLOW $(Cl)_2$, (Cl_2) ALLOW CO Within the context of the question, CO is Co
(b)	(iii)	6 ✓	1	

(c)	(i)	O₂/oxygen bonds to Fe²+/Fe(II) ✓ Fe²+/Fe(II) essential for 1st marking point		ASSUME that 'it' refers to oxygen ALLOW O_2 binds to Fe^{2+} OR O_2 donates electron pair to Fe^{2+} OR O_2 is a ligand with Fe^{2+}
		(When required,) O₂ substituted OR O₂ released ✓ Fe²+ not required for 2nd marking point (e.g. IGNORE Fe)	2	IGNORE O ₂ reacts with Fe ²⁺ OR O ₂ is around Fe ²⁺ ALLOW bond to O ₂ breaks when O ₂ required OR H ₂ O replaces O ₂ OR vice versa ALLOW CO ₂ replaces O ₂ OR vice versa ALLOW O ₂ bonds/binds reversibly
(c)	(ii)	$(K_{\text{stab}} =) \frac{[\text{HbO}_2(\text{aq})]}{[\text{Hb(aq)}] [O_2(\text{aq})]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
(c)	(iii)	Both marks require a comparison		
		Stability constant/ K_{stab} value with CO is greater (than with complex in O ₂) \checkmark		IGNORE (complex with) CO is more stable
		(Coordinate) bond with CO is stronger (than O₂) OR CO binds more strongly ✓	2	ALLOW bond with CO is less likely to break (than O_2) OR CO is a stronger ligand (than O_2) OR CO has greater affinity for ion/metal/haemoglobin (than O_2)
				ALLOW CO bond formation is irreversible OR CO is not able to break away
				IGNORE CO bonds more easily
		Total	18	OR CO complex forms more easily
		Total	10	

Q	uest	ion	er	Marks	Guidance
3	(a)		2Fe + 3C l_2 → 2FeC l_3 ✓	1	ALLOW 2Fe + $3Cl_2 \longrightarrow Fe_2Cl_6$ ALLOW multiples, e.g. Fe + $1\frac{1}{2}Cl_2 \longrightarrow FeCl_3$ IGNORE state symbols DO NOT ALLOW 2Fe + $3Cl_2 \longrightarrow 2Fe^{3+} + 6Cl^-$
	(b)		$Fe^{3+} + 3OH^{-} \longrightarrow Fe(OH)_{3} \checkmark$	1	IGNORE state symbols ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$ ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(OH)_3 + 6H_2O$
	(c)	(i)	$2[Fe(H_2O)_6]^{3+} + Zn \longrightarrow 2[Fe(H_2O)_6]^{2+} + Zn^{2+}$ All chemical species correct (IGNORE e ⁻ for 1st mark) \checkmark Balancing with '2' in front of both Fe complex ions \checkmark	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: 2Fe ³⁺ + Zn → 2Fe ²⁺ + Zn ²⁺
		(ii)	redox ✓	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $[Fe(CN)_6]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \longrightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3– state symbols not required	2	ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^- \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ ALLOW ECF for an equation showing formation of $[Fe(CN)_6]^{4^-} \text{ from } [Fe(H_2O)_6]^{2^+}:$ $[Fe(H_2O)_6]^{2^+} + 6CN^- \longrightarrow [Fe(CN)_6]^{4^-} + 6H_2O$ Notice different charges on complex ions: LHS 2+, RHS 4–
		(ii)	ligand substitution ✓	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Question	er	Marks	Guidance
(e)	F and G: The state of the st	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. Omnow Fe
	Bonds must go to O ligand atoms on EACH structure IGNORE charges on Fe³+ and O⁻ at this stage 3– charge outside brackets of BOTH isomers AND NO charges shown on Fe or O within brackets Note: This mark is only available from structures with three bidentate ligands bonded to Fe via two Os on each ligand ✓		Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper. For bond into paper, ALLOW:
(f)	FeO ₄ ^{2−} ✓	1	Formula AND charge needed ALLOW other 2– ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW Fe ₂ O ₇ ^{2–} , Fe ₃ O ₁₀ ^{2–} , etc.
	Total	12	

C	luest	ion	er	Marks	Guidance
4	(a)		(1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ 4s ² ✓ (1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ ✓	2	ALLOW 4s before 3d, i.e. $1s^22s^22p^63s^23p^64s^23d^8$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. $1s_22s_22p_63s_23p_63d_84s_2$ $1s^22s^22p^63s^23p^64s^23D^8$ For Ni ²⁺ ALLOW 4s ⁰ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) ✓	1	
		(ii)	4 ✓	1	
		(iii)	(Each) DMG has 1– charge which cancel 2+ charge on Ni ²⁺ ✓	1	ALLOW 2 x -1 + 2 = 0 For Ni ²⁺ , ALLOW Ni has an oxidation number of (+)2 ALLOW Ni ²⁺ cancelled out by 2 DMG ⁻ ALLOW 'balanced' for cancelled
		(iv)	H ₃ C CH ₃ C N N O I H V	1	ALLOW OH for O—H ALLOW CH ₃ — DO NOT ALLOW —H—O

Question	er	Marks	Guidance
(c)	Marks are for correctly calculated values amount of Ni	7 max	ANNOTATE WITH TICKS AND CROSSES, etc
	Total	13	