

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **103 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 6: Organic chemistry and analysis

Percentage

%

www.exampaperspractice.co.uk

Score

/86

F324: Rings, Polymers & Analysis 4.3.2 – Spectroscopy MARK SCHEME

1. (a) infrared – 1 mark only

shows (very broad) peak between 2500–3300 (cm⁻¹) (due to O–H bond) \checkmark

ALLOW (very broad) peak around $3000 (cm^{-1})$ **OR** any stated value between 2500 and $3300 (cm^{-1})$ for O–H **DO NOT ALLOW** peak in range $3200-3550 (cm^{-1})$ **IGNORE** any reference to C=O or C–O as both are also present in an ester **OR** to fingerprint region

¹³C NMR – 2 marks

 $(CH_3)_2CHCH_2COOH$ has 4 peaks (due to 4 different C environments) \checkmark $(CH_3)_3CCOOH$ has 3 peaks (due to 3 different C environments) \checkmark

ALLOW $^{(13)}C$ NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark 3

3

(b) **splitting pattern**

explains any two in terms of 'n + 1 rule' for two marks $\checkmark \checkmark$ Explains any one peak for 1 mark \checkmark

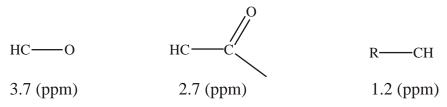
> *1 mark* for correct ester if two splitting patterns are correctly analysed **ignore** the third

- *singlet* therefore adjacent C (if any) has no Hs *ALLOW singlet because next or bonded to an O*
- *multiplet* **OR** split into 7 therefore adjacent Cs have lots of/6 Hs *ALLOW multiplet/heptet because next to 2 CH₃s*
- *doublet* therefore adjacent C is bonded to 1H *ALLOW doublet because next to a CH*

must spell one of multiplet / heptet, singlet, doublet correctly

max = 2 marks

chemical shifts


two marks if any two absorptions are identified correctly $\checkmark \checkmark$ one mark if any one absorption is identified correctly \checkmark

ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3 (*ppm*)

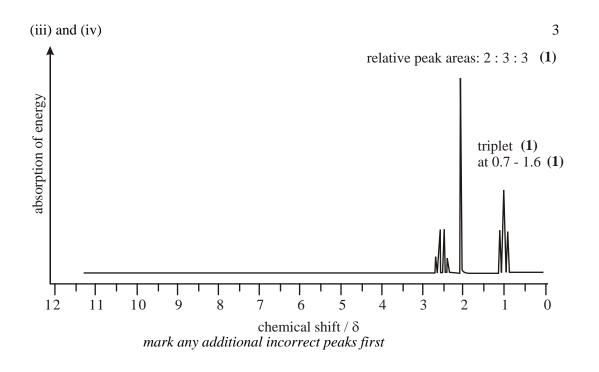
- peak ~3.7 (ppm) bonded to an O
- peak ~2.7 (ppm) indicates it is next to a C=O
- peak ~1.2 (ppm) bonded to other Cs **OR** part of a chain

max = 2 marks

ALLOW any two gets 2 marks, any one scores 1 mark

ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified **IGNORE** the third

compound identified as $(CH_3)_2CHCOOCH_3 \checkmark \checkmark$


compound identified as $CH_3COOCH(CH_3)_2 \checkmark$

[9]

6

(i) the peak is due to the CH₃CO- group (1) not split, so next to a C with no protons / has no neighbouring proton / δ value is in the range 2.0 – 2.9 (1)
(ii) adjacent to a C with three protons / to a CH₃ (1)

[6]

3. IR

Similarities Any 2 of the following three peaks (must give the quoted range) peak corresponding to OH in all three($3230 - 3550 \text{ cm}^{-1}$) (1)		
peak corresponding to NH in all three($3100 - 3500 \text{ cm}^{-1}$) (1) peak corresponding to CO in all three ($1000 - 1300 \text{ cm}^{-1}$) (1)	2 max	
Differences only shown in the fingerprint region (1)	1	
Mass Spec		
<pre>similarities M_r (75)/ base peak will be the same (1) M + 1 peak same (1)</pre>	1 1	
Differences Fragmentation pattern may show differences between isomers / specific example, eg CH ₃ + at m/e 15 (1)	1	
	(MAX 5)	
QWC Use of any two terms from: functional group / amino group / hydroxy group / fingerprint / fragmentation / fragment ion(s) / base peak or molecular ion / M + 1 peak / m/e	1	[6]

(a) H H O

H Η Η Η Η 2 propanoate and ester group (1) 2-methyl propyl (1) propanoic acid (1) (2-)methylpropan-1-ol (1) heat (1) conc. $H_2SO_4(1)$ (allow ecf from part (a) for the equation) $CH_3CH_2COOH + CH_3)_2CHCH_2OH \rightarrow CH_3CH_2COOCH_2CH(CH_3)_2 + H_2O$ products (1) reactants (1) 6

(c) mass spectrum / spectrometry (1)

H H、 |

5. δ value / chemical shift gives the 'type' of proton / chemical environment (1) AW example quoted from data sheet (1) number of peaks gives the number of different types of proton / chemical environments (1) relative / ratio of (1) peak areas gives the number of protons (of each type) (1) splitting gives number of neighbouring / adjacent protons (1) description of n + 1 rule / example of doublet, triplet or quadruplet showing 1, 2 and 3 protons neighbouring (carbon) atom (1) AW D_2O can be used to identify OH groups (1) 7 ANY 7 marks out of 8 Quality of written communication mark for correct use and organisation of at least two of the following technical terms: proton, environment, singlet (doublet etc.), ppm, equivalent, chemical shift, splitting, labile, integration 1

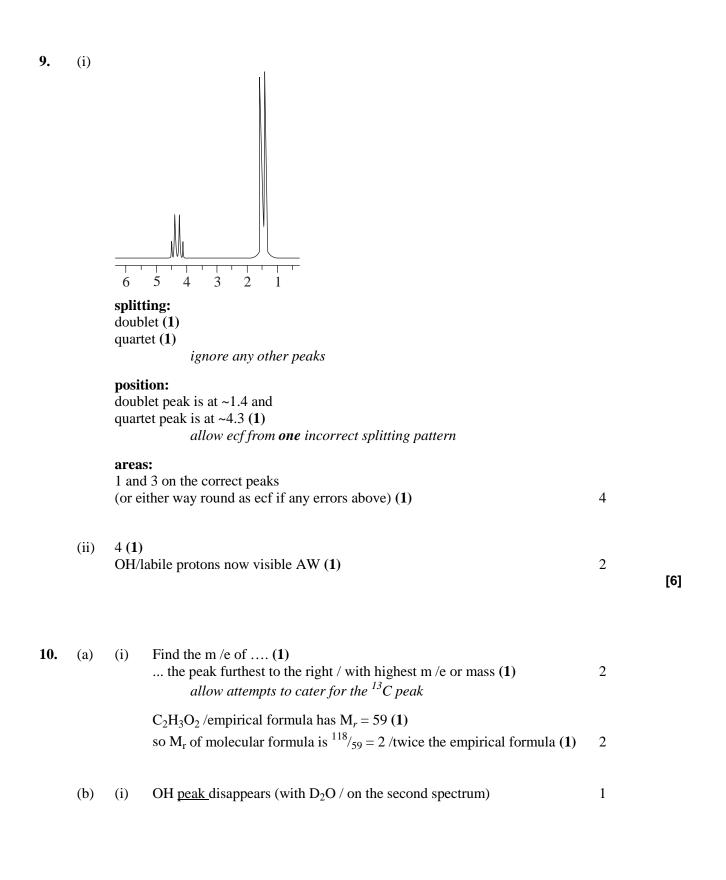
[8]

2

[10]

4.

(b)


6.	(a)	(i) alkene (1) ester (1) <i>allow "C=C double bond"</i>	2	
		i. O O O O O O O O	1 1	
	(b)	same structural formula/order of bonds, different spacial arrangement AW (1) description or diagram showing B and how it is different from A (1)□	2	
	(c)	$H_{3}C = C - OH CH_{2} - OH $		
		(1) (1)	2	
	(d)	(i) peak at 1680-1750 (cm ⁻¹) due to C=O (1) peak at 1000-1300 (cm ⁻¹) due to C-O / (1)	2	
		 (ii) 2500-3300 / 3230-3550 (cm⁻¹) 1 O-H /carboxylic acid/alcohol is not present in A (1) allow 1 mark for ~500-1500 (cm⁻¹) which is a unique fingerprint region etc 	2	[12]
7.	(a)	low boiling point / easily turns to a gas AW (1)	1	
	(b)	2,4-dinitrophenylhydrozine / 2,4-DNP(H) / Brady's reagent (1) purify/recrystallise the product/solid (derivative) (1) measure the melting point /mp (1)		
		compare the result with data book/known values (1)	4	[5]

8.	(a)	(i) Molecular ion peak: the peak caused by the unfragmented molecule / the peak with the highest m/e value / the peak that tells you the Mr.	1	
			Base peak : peak with the greatest (relative) intensity / peak representing most stable/abundant fragment NOT the tallest / biggest / most common peak	1
		(ii)	The molecular ion is too unstable / will have been <u>completely</u> fragmented / may not carry a positive charge NOT peak too small to be seen / too little ion present	1
	(b)	IR sp	pectrum:	
		C=O	0 peak at approx 1650 cm ⁻¹ (1680-1750 cm ⁻¹)	1
		broa	d O-H peak at value(s) between 2500-3300 cm ⁻¹	1
		igno	re any references to C-O peak at $1000 - 1300 \text{ cm}^{-1}$	
		mass	s spectrum:	
		Frag	ment with $m/e = 31$ is CH_2OH^+	1
		Frag	ment at $m/e = 45$ is $COOH^+$	1
	penalise missing + sign once only			
	(c)	2 pro	bton peak at $\delta = 3.3-4.3 - \text{singlet} (-\text{CH}_2-)$	1
		1 pro	pton peak at $\delta = 3.5-5.5 - \text{singlet}$ (-OH)	1
			bton peak at $\delta = 11.0-11.7 - \text{singlet}$ (-COOH)	1
		(rang	ges of chemical shift (δ) values taken from data sheet)	
		•	penalise each error once only ignore peak areas/heights unless incorrectly labelled	
		- - 1		
		may	elled diagram of the structure of G proposed by the student be used to provide evidence for the positioning of peaks he sketched spectrum.	
		Both	n OH and COOH protons disappear on shaking with D_2O	1

[11]

		(ii)	no of peaks: one (1)		
			splitting: none (1)		
			all four protons equivalent / in the same environment (1) if the wrong structure is chosen allow ecf for: two peaks (1), splitting (1)(1) (as last 2 marks for part (ii))	3	
					[8]
((i)	A C ₃	$C_{3}H_{6}(1)$ B $C_{4}H_{8}(1)$	2	
((ii)	A CI	CH ₃ CH=CH ₂ (or displayed) ('sticks' penalised once)	1	
((iii)	C ₃ H ₅	H_5^+ (1) for formula and (1) for charge	2	
					[5]

11.