

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **222 Minutes**

2002

CHEMISTRY

Mark Scheme

OCR AS & A LEVEL

Module 4: Core organic chemistry

Percentage

%

www.exampaperspractice.co.uk

Score

/185

1. Fractional distillation \checkmark

DO NOT ALLOW just 'distillation'

Because fractions have different boiling points \checkmark

For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points

[2]

1

1

2. (i) Decane \checkmark

DO NOT ALLOW deceane

(ii) Skeletal formula of branched $C_{10}H_{22}$ \checkmark

Formula **must** be skeletal **AND** must not include any symbol, e.g. CH_3

Any possible skeletal formulae e.g.

(iii) Decane has more surface contact

OR branched chains have less surface contact \checkmark

Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact

Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓

ALLOW Decane has stronger van der Waals' forces **OR** branched chains have weaker van der Waals' forces More intermolecular forces is **not** sufficient

(iv) Branched chains have more efficient combustion
 OR decane has less efficient combustion ✓

ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR less likely to produce pre-ignition or knocking OR increases octane rating

ALLOW ORA for decane

Better fuel is **NOT** sufficient Burns more cleanly is **NOT** sufficient

[5]

2

1

2

1

3. (i) $C_{10}H_{22} + 15\frac{1}{2}O_2 \rightarrow 10CO_2 + 11H_2O$

ALLOW any correct multiple IGNORE state symbols

All four species correct \checkmark

balancing of four correct species \checkmark

(ii) $N_2 + O_2 \longrightarrow 2NO \checkmark$

ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

[3]

4. (i) $CH_4 + Br_2 \rightarrow CH_3Br + HBr \checkmark$

ALLOW any correct multiple IGNORE state symbols

(ii) Dibromomethane
 OR tribromomethane
 OR tetrabromomethane ✓

ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. CH₂Br₂

(iii) $Br_2 \rightarrow 2Br$

OR homolytic fission of bromine \checkmark

 $Br + CH_4 \rightarrow HBr + CH_3 \checkmark$ $CH_3 + Br_2 \rightarrow CH_3Br + Br \checkmark$

 $Br + CH_3 \rightarrow CH_3Br$ $OR Br + Br \rightarrow Br_2 \checkmark$

Ethane made when two methyl radicals react **OR** $CH_3 + CH_3 \rightarrow C_2H_6 \checkmark$

All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination

Quality of Written Communication – Consists of

initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation:

2 names of steps linked to correct equations \checkmark BUT

3 names of steps linked to correct equations $\checkmark\checkmark$

If no equations are given to link the names of the step then award one mark for mention of all three steps

[9]

7

1

5. Cracking ✓

5.	Cracking ✓ <i>ALLOW</i> catalytic or thermal cracking ✓	[1]
6.	(i) $C_8H_{18} + 8^{1/2}O_2 \rightarrow 8CO + 9H_2O \checkmark$ ALLOW any correct multiples IGNORE state symbols	1
	 (ii) limited supply of air OR not enough O₂ ✓ ALLOW use of air or oxygen IGNORE it is not completely oxidised 	1 [2]
7.	 skeletal formula of a branched isomer of C₈H₁₈ ✓ skeletal formula of a cyclic hydrocarbon OR skeletal formula of substituted arene of C₈H₁₀✓ ALLOW any ring between C₃ and C₈ with 8 carbon atoms per molecule IGNORE wrong names If two correct structural or displayed formulae drawn award one mark 	[2]

8. (i) $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O \rightarrow Cl + O_2 \checkmark$ overall: $O_3 + O \rightarrow 2O_2 \checkmark$

OR

 $Cl + CH_4 \rightarrow CH_3 + HCl \checkmark$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl \checkmark$ overall: $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl \checkmark$ Marks must come from one or other of the radical process and not from both of them. If two processes are described then an incorrect step in one process will contradict a correct step in the other process. ALLOW overall equation mark even if the steps are wrong the radicals do NOT need a single dot **IGNORE** any state symbols ALLOW $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O_3 \rightarrow Cl + 2O_2 \checkmark$ overall: $2O_3 \rightarrow 3O_2 \checkmark$ ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong

hydrocarbon used e.g. C_2H_4 is used in first step

(ii) ΔH shown **and** products below reactants \checkmark E_a shown \checkmark

 E_c shown < E_a \checkmark

NOT double headed arrows but apply ecf for more than one double headed arrow

ALLOW one mark if two correctly labelled curves are drawn but the arrows are not shown or are incorrectly drawn The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod

[6]

[1]

3

9.	(i)	120–130 (1)	1	
	(ii)	boiling point increases with increase in Mr /molecular formula/number of carbon atoms/chain length (1) more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces (1)	2	
				[3]

- **10.** $C_9H_{20} \rightarrow C_7H_{16} + C_2H_4$ (1)
- 11. (i) Any branched isomer of heptane with correct name, e.g.

2-methylhexane (1)

(ii)
$$\rightarrow$$
 \rightarrow $+$ H^2 2
[4]

12. (i) species with an unpaired electron (1)1(ii) uv (light)/high temperature/min of 400° C/sunlight (1)1(iii) homolytic (fission) (1)1(iv)
$$C_4H_{10} + Cl \cdot (1) \rightarrow C_4H_9 \cdot + HCl (1)$$
2(5]

$$C_7H_{16} \rightarrow C_4H_{10} + C_3H_6$$

[9]

15.	Bonding:	π -bond formed by overlap of (adjacent) p-orbitals/ π -bond labelled on diagram	1	
		diagram to show formation of the π -bond	1	
		$H_{3C} \rightarrow H_{H}$ minimum allowed for diagram mark		
		ог		
	Shape/bon	d angles:		
		tetrahedral around the CH ₃	1	
		bond angle = $109^{\circ}28/(109-110^{\circ})$	1	
		trigonal planar around each C in the C=C	1	
		bond angle = 120° (118-122°)	1	
	Cis-trans			
		<i>cis</i> & <i>trans</i> correctly labelled eg but-2-ene require a double bond because it restricts rotation each C in the C=C double bond must be bonded to two different atoms or groups	1 1 1	
	QWC	Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers,	1	
		geometrie	I	[10]
16.	(i) (free	radical) substitution	1	
	(ii) 1-bro	omohexane, 2-bromohexane and 3-bromohexane	3	[4]

Recognises that either a catalyst or high temperature (heat is not sufficient) is required			
cracking reformin compoun	suitable balanced equation g equation or statement indicating formation of a ring/cyclic d	1	
suitable balanced equation with H_2			
(balanced equation showing formation of a ring scores both marks)		1	
isomeris	ation suitable balanced equation		
The processed products are:			
•	used in fuels/used in petrol		
•	better /more efficient fuels/increase octane number/rating		
•	alkenes (from cracking) produce polymers/alcohols		
•	H_2 used for Haber process/fuels/hydrogenation of oils	3	
QWC coherent	SPAG – look for two complete sentence that present a argument	1	

 $C_6H_{11}OH / C_6H_{12}O \rightarrow C_6H_{10} + H_2O$

[9]

from the Cl-alcohol allow

[6]

19.	(a)	(i)	compound/molecule containing hydrogen and carbon only	1
		(ii)	$C_{10}H_{22}$	1
		(iii)	$C_5H_{11} \{ ecf from (ii) \}$	1
	(b)	(i)	(a particle that) contains/has a single/unpaired electron	1
		(ii)	UV (light) /sunlight/high temp	1
		(iii)	homolytic (fission)/ homolysis	1
		(iv)	$C_{12}H_{26} + Cl \bullet \rightarrow \bullet C_{12}H_{25} + HCl$	1
			(the dot for the free radical does not have to be on the C)	
			$\bullet C_{12}H_{25} + Cl_2 \rightarrow C_{12}H_{25}Cl + Cl \bullet$	1
		(v)	six	1
	(c)	(i)	$C_{12}H_{26} \rightarrow 2C_2H_4 + 1C_8H_{18}$	2
			(1 mark for correct formula of octane or ethene)	
		(ii)	octane/ ecf from (c) (i)	1

- 20. 400 +/- 5 1 (a) octane, hexadecane. 545 +/- 5 if °C penalise once.
 - fractional distillation (b)

[16]

1

- (ii) 2-methylpentane
- (iii) C, B and A
- (iv) the more branching/the shorter the chain... the lower the boiling point/ less energy needed to separate the molecules

long chain have greater surface area/surface interactions/more VdW forces or converse argument about short/branched chains.

(d) (i)

[16]

1

1

1

21.	(i)	$Cl_2 \rightarrow 2Cl \bullet$	1	
	(ii)	uv (light)/high temperature/min of 400 C/sunlight	1	
	(iii)	$Cl \bullet + C_6H_{12} \longrightarrow C_6H_{11} \bullet + HCl$		
		$C_6H_{11}\bullet + Cl_2 \longrightarrow C_6H_{11}Cl + Cl\bullet$	1	
	(iv)	react with each other/suitable equation		
		solvent $\mathbf{W} = $ water/aqueous/aqueous ethanol	1	
		solvent $\mathbf{X} = \text{ethanol/alcohol}$	1	
			[5]	
22.	ident	tifies the three process as cracking, reforming, isomerisation	1	
	recog	gnises the need for high temperature or a catalyst	1	
	equa	tion for cracking	1	
	equa	tion for isomerisation	1	
	state	that reforming converts chains into rings/cyclic compounds	1	
	equa	tion for reforming (balanced with H_2 could score two marks)	1	
	oil is	s finite/non-renewable	1	
	ethar	nol is renewable/sustainable	1	
	from	n plants/crops/sugar cane/sugar beet/glucose/sugar/ fermentation	ı 1	
	C ₂ H	$_5\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}$	1	
	QWO	С		
	•	organise relevant information clearly and coherently, using sp vocabulary when appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renewable/ feedstock/ finite/fermentation/non-renewable/sustainable/zeolite/bimetal catayst/ etc)	lic	
	•	reasonable spelling, punctuation and grammar throughout	1	
			['']	
W =	water/	1		
solve	solvent $\mathbf{X} = \text{ethanol/alcohol}$ 1			
			[-]	
23.	(a)	C_6H_{14}	1	

(b)	(i)	boiling point increases with increase in $M_R/molecular$ formula/N° of carbon atoms/chain length	1	
	(ii)	more intermolecular forces/electrons/surface area/		
		surface interactions/van der Waal forces	1	
	(iii)	120 – 130 °C	1	F 4 1
				[4]

24. (i)
$$C_9H_{20} \longrightarrow C_7H_{16} + C_2H_4$$
1(ii) $C_2H_4 + H_2O \longrightarrow C_2H_5OH$ 1temperature > 100 °C/ steam1phosphoric acid (catalyst)1

(b)

$$C_7H_{16} \longrightarrow C_6H_{11}CH_3/ + H_2$$

(c) more efficient fuel/better fuel/ higher octane number/reduces

For more help please visit our website www.exampaperspractice.co.uk

[4]

knocking/more volatile/lower boiling points/burn better/burn more easily/quicker \checkmark

[5]

1

26.	(a)	(i)	reaction 1	1
		(ii)	reaction 4	1
		(iii)	reaction 3	1
	(b)	(i)	lone pair/electron pair donor	1
		H₃C−	$-CH_2 \xrightarrow{\delta_+} CH_2 \xrightarrow{C_1} CH_2 \xrightarrow{C_1} CH_2 \xrightarrow{C_2} CH_$	
			Correct dipole	1
			Curly arrow from the O in the OH^{-} to C in the CH_{2}	1
			Curly arrow to show movement of bonded pair in the C-Cl bond	1
			$C\Gamma$ as a product	1
	(c)	same molecular formula, different structure/arrangement of atoms. (same formula, different structure.)	2	
		(ii)		2
			D	
	(d)	(i)	addition, (not additional)	1
		(ii)	poly(propene)/ polypropene/ polypro-1-ene, polypropylene	1
		(iii)		1
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

[15]

27.	(i)	homolyti	c ✓	1
	(ii)	$Cl_2 \rightarrow 2C$	$Cl \bullet$ (need \bullet on the Cl penalise only once in the 3 equations) \checkmark	1
	(iii)	Ι	$(C_5H_{10}) + \underline{Cl} \bullet \to (\bullet C_5H_9) + \underline{HCl} \checkmark$	1
		II	$(\bullet C_5H_9) + \underline{Cl_2} \rightarrow \underline{C_5H_9Cl} + \underline{Cl} \checkmark$	1
				[4]
28.	Varia	ation in boi	iling points. (max = 4 marks)	
	As cl	hain length	increases, boiling point increases 🗸	1
	due t interi	o increased molecular	d number of electrons/ surface area/ more van der Waals forces / forces/ more surface interactions 🖌	1
	As bi	ranching ir	ncreases, boiling point decreases 🖌	1
	straig	ght chains	can pack closer together/ straight chains have greater surface area/ \checkmark	1
	more	van der W	Vaals forces /more intermolecular forces/ more surface interactions	
	Isom	erisation	(max = 4 marks)	
			(produces) branched chain alkanes \checkmark	1
			equation to illustrate any isomerisation (of octane) \checkmark	1
	\sim	\sim	into any one of , or ,	\downarrow
			or any other branched isomer of octane	
	Bran	ched chain	as are better/more efficient fuels/used as additives \checkmark	1
	becau num	1		
	QWC	C mark		
	•	use of su intermole	itable chemical terms such as van der Waals, intermolecular forces/ ecular bonds/volatile/ knocking/ pinking/pre-ignition	
	•	reasonab	le spelling, punctuation and grammar throughout \checkmark	1 [9]