

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Maths

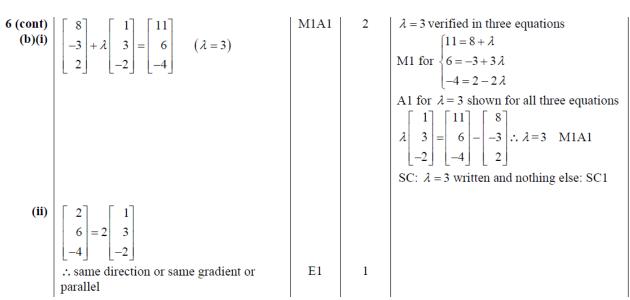
Mark Scheme

AQA AS & A LEVEL

%

3.11 J: Vectors

www.exampaperspractice.co.uk


	Total		10	
	⇒ 90° (or perpendicular)	A1F	3	Accept a correct ft value of $\cos \theta$
(ii)	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix} = 4 - 4 = 0$	M1A1		Clear attempt to use directions of AC and l_2 in scalar product
	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 \end{bmatrix}$			$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ direction vector A1 all correct
	$\mathbf{r} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$	M1A1	2	$r = \begin{bmatrix} 2 \\ -3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ M1 calculate and use
(b)(i)	l_2 has equation			Or
	is satisfied by $\lambda = -4$	A1	2	$\lambda = -4$ satisfies 2 equations
(iii)	$\begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	M1		
(ii)	$\begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \text{parallel}$	E1	1	Needs comment "same direction" Or "same gradient" (Or by scalar product)
/ ()(-)	$\overline{AB} = \begin{bmatrix} 6 \\ 5 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}$	A1	2	
7(a)(i)	$\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$	M1		Penalise use of co-ordinates at first occurrence only

6(a)(i)	$\overrightarrow{OC} = 2 \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ -2 \end{bmatrix}$	B1	1	(Penalise coordinates once only)
(ii)		M1 A1	2	$\overrightarrow{OA} - \overrightarrow{OB}$ or $\overrightarrow{OB} - \overrightarrow{OA}$ or 2/3 correct cpts. A0 for line AB
(b)(i)	$AC^{2} = (6-2)^{2} + (4-4)^{2} + (-1-2)^{2} = 25$	M1		Components of AC
(ii)	AC = 5	A1 M1	2	AG Clear attempt to use \overline{AB} and \overline{AC}
	$\overrightarrow{AB} \bullet \overrightarrow{AC} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} = 4 + 6 = 10$	A1F		ft \overline{AB} from a(ii) and/or \overline{AC} from b(i)
	$3 \times 5 \times \cos \theta = 10$	M1		Use of $ a b \cos \theta = \mathbf{a.b}$ with one correct $ a $ and $\mathbf{a.b}$ evaluated
	<i>θ</i> = 48.189 ≈ 48 °	A1	4	CAO (AWRT)
	Alternative: use of cos rule Find 3 rd side + use cos rule	(M2) (A1F) (A1)		ft on previously found vectors CAO (AWRT)
(c)	$\overrightarrow{BP} = \begin{bmatrix} \alpha - 3 \\ \beta - 2 \\ \gamma1 \end{bmatrix}$	B1		
	$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} \bullet \overline{BP} = 0$	M1		Their \overline{BP}
	$4\alpha - 3\gamma - 15 = 0$	A1	3	AG convincingly obtained
	Total		12	

6(a)(i)	$\overline{BA} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} - \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix}$	M1A1	2	Attempt $\pm \overrightarrow{BA}$ $(OA - OB \text{ or } OB - OA)$
(ii)	$\overline{BC} = \begin{bmatrix} 6\\2\\-4 \end{bmatrix}$	B1		Allow \overline{CB} ; or $\begin{bmatrix} -6 \\ -2 \\ 4 \end{bmatrix} = \overline{BC}$ or $\overline{CB} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix}$ May not see explicitly
	$ \overrightarrow{BA} \left(= \sqrt{(-2)^2 + (-6)^2 + (4)^2} \right) = \sqrt{56}$	B1F		Calculate modulus of \overrightarrow{BA} or \overrightarrow{BC} ; for finding modulus of one of vectors they have used
	$\overrightarrow{BA} \bullet \overrightarrow{BC} = \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix} = -12 - 12 - 16$	M1		Attempt at $\overrightarrow{BA} \bullet \overrightarrow{BC}$ with numerical answer; or $\overrightarrow{AB} \bullet \overrightarrow{CB}$
		A1		for –40, or correct if done with multiples of vectors

$\cos ABC = \frac{-40}{\sqrt{56}\sqrt{56}} = -\frac{5}{7}$	A1	5	AG (convincingly obtained)
V 30 V 30			Cosine rule: M1 attempt to find 3 sides A1 lengths of sides M1 cosine rule A1F correct A1 rearrange to get -5
			$\cos ABC = \frac{-5}{7}$ (ft on length of sides)

(c)	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA}$	B1		PI; \overrightarrow{OD} = correct vector expression which
				may involve \overrightarrow{AD}
	$= \begin{bmatrix} 11 \\ 6 \\ -4 \end{bmatrix} + \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix} D \text{ is } (9,0,0)$	M1A1	3	M1 for substituting into vector expression for \overrightarrow{OD} NMS 3/3
	Total		13	

7(0)						
/(a)	$\begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = 3 - 6 + 3 = 0$	M1		attempt at sp, 3 terms, added		
	_1					
	= 0 ⇒ perpendicular	A1		= 0 ⇒ perpendicular seen		
				$\left(\text{or }\cos\theta = 0 \Longrightarrow \theta = 90^{\circ}\right)$		
				3		
				Allow but not $\begin{vmatrix} -6 \\ -6 \end{vmatrix} = 0$		
				Allow $\begin{bmatrix} 3 \\ -6 \\ \frac{3}{0} \end{bmatrix} = 0$		
(b)	$8 + 3\lambda = -4 + \mu$	M1		set up any two equations		
	$6-3\lambda = 2\mu$ $-9-\lambda = 11-3\mu$ $\lambda = -2, \mu = 6$					
	$-9 - \lambda = 11 - 3\mu$					
		m1 A1		solve for λ and μ		
	verify third equation	m1		substitute λ, μ in third equation		
	intersect at $(2,12,-7)$	A1	5	CAO		
	Alt (for last two marks)					
	substitute λ into l_1 and μ into l_2	(m1)				
	(2)		l	I		
	intersect at $(2,12,-7)$, condone $\begin{pmatrix} 2\\12\\-7 \end{pmatrix}$	(A1)		(2,12,-7) found from both lines		
	-7			Note: working for (b) done in (a): award		
				marks in (b)		
				- $ -$		
7(c)	$AP = \begin{bmatrix} 12 \\ 19 \end{bmatrix}$	M1		$\overrightarrow{AP} = \pm \left\{ \text{their } \overrightarrow{OP} - \begin{pmatrix} -4 \\ 0 \\ 11 \end{pmatrix} \right\}$		
	$\overline{AP} = \begin{pmatrix} 6\\12\\-18 \end{pmatrix}$ $AP^2 = 504$ $AB^2 = 2AP^2$			(-1/)		
	$AP^2 = 504$ $AP^2 = 2AP^2$	A1F		ft on P		
	$AB^{2} = 2AP^{2}$ $AB = 12\sqrt{7}$	M1		Calculate AB^2		
	Total	A1	11	OE accept 31.7 or better		
	1000	I		I		