

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 87 Minutes

Score

Percentage

/73

%

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

www.exampaperspractice.co.uk

Qu	estion	Answer	Marks	Guidance
1 ((a)	(A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital ✓		ALLOW incomplete for partially filled DO NOT ALLOW d shell
		Fe AND $1s^22s^22p^63s^23p^63d^64s^2 \checkmark$		ALLOW 4s before 3d, i.e. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶
		Fe(II) / Fe ²⁺ AND $1s^22s^22p^63s^23p^63d^6 \checkmark$		IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently,
		Fe(III) / Fe ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ ✓	4	i.e. $1s_22s_22p_63s_23p_63d_64s_2$ $1s^22s^22p^63s^23p^64s^23D^6$ [Ar] $4s^23d^6$
				For Fe ²⁺ and Fe ³⁺ , ALLOW 4s ⁰ in electron configuration
				IGNORE electron configurations of elements other than Fe
	(b)	EXAMPLES MUST REFER TO Cu ²⁺ FOR ALL MARKS		ANNOTATIONS MUST BE USED
		PRECIPITATION Reagent NaOH(aq) OR KOH(aq) ✓ States not required		ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of NH ₃ /ammonia DO NOT ALLOW concentrated NH ₃ DO NOT ALLOW just OH ⁻
		Transition metal product AND observation Cu(OH)₂ AND blue precipitate/solid ✓		ALLOW Cu(OH) ₂ (H ₂ O) ₄ ALLOW any shade of blue ALLOW (s) as state symbol for ppt (may be in equation)
		Correct balanced equation Cu ²⁺ (aq) + 2OH⁻(aq) → Cu(OH)₂(s) ✓ state symbols not required	3	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ For NH ₃ , also ALLOW : $[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(OH)_2(H_2O)_4 + 2NH_4^+$
		IF more than one example shown, mark example giving lower mark		ALLOW full equation, e.g. $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ $CuCl_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaCl$

Qı	uestic	n	Answer	Marks	Guidance
	(b)		LIGAND SUBSTITUTION – 2 likely Reagent NH₃(aq)/ammonia ✓		IF more than one example shown, mark example giving lower mark
			State not required		ALLOW NH ₃ in equation if 'reagent' not given in description
			Transition metal product AND observation [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ AND deeper/darker blue (solution)		DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H₂O) ₆] ²⁺ ✓
			Correct balanced equation $[Cu(H2O)6]2+ + 4NH3 \longrightarrow [Cu(NH3)4(H2O)2]2+ + 4H2O$		
			OR	3	
			Reagent Concentrated HCl OR (dilute) HCl(aq) OR NaCl(aq) ✓ State not required Transition metal product AND observation [CuCl₄]²- AND yellow (solution) ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets ALLOW any shades of yellow, e.g. yellow–green DO NOT ALLOW precipitate
			Correct balanced equation $ [Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark $		ALLOW other correct ligand substitutions using same principles for marking as in two examples given
	(c)	(i)	Pt oxidised from 0 +4 ✓ N reduced from +5 to +4 ✓	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round
					DO NOT ALLOW Pt is oxidised and N reduced with no evidence
					DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

Question	Answer	Marks	Guidance
(c) (ii)	Pt + 6HCl + 4HNO ₃ \longrightarrow H ₂ PtCl ₆ + 4NO ₂ + 4H ₂ O $\checkmark\checkmark$	2	1st mark for ALL species correct and no extras: i.e: Pt + HCl + HNO₃ → H₂PtCl₆ + NO₂ + H₂O DO NOT ALLOW charge on Pt, e.g. Pt²+ 2nd mark for correct balancing ALLOW correct multiples
(d)	CI CI CI OR CI CI CI CI CI OR 3-D Shape 1 mark Correct 3-D diagram of Pt surrounded by 6CI ONLY ✓ Bond angle 1 mark bond angle of 90° on diagram or stated ✓ Charge 1 mark 2- charge shown outside of brackets ✓	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: """""""""""""""""""""""""""""""""""

C	Question		Answer	Marks	Guidance
	(e)	(i)	Donates two electron pairs to a metal (ion) ✓		ALLOW lone pairs for electron pairs
			forms two coordinate bonds ✓	2	ALLOW dative (covalent) bond for coordinate bond
					ALLOW 1 mark for a full definition of a ligand (without reference to 2: i.e. Donates an electron pair to a metal (ion) forming a coordinate bond ✓
		(ii)			ALLOW displayed formulae
			NH ₂ TOO		'- charges' essential in (COO ⁻) ₂ structure
					DO NOT ALLOW -H ₂ N
			NH_2 \checkmark -0	2	
			Total	21	

	uest	ion	er	Mark	Guidance
2	(a)		Ni 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁸ 4s² ✓ d block: (Ni:) 'd' is highest energy sub-shell/orbital ✓		ANNOTATE WITH TICKS AND CROSSES, etc Note: Examples must be for Ni, not other d block elements ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW [Ar]4s ² 3d ⁸ OR [Ar]3d ⁸ 4s ² ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈ DO NOT ALLOW highest energy shell is 'd' OR 'd is the outer sub-shell' (4s as well)
			Ni ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ ✓ Transition element: has an ion with an incomplete/partially-filled d sub-shell/orbital ✓ A ligand donates an electron pair to Ni ²⁺ OR metal ion OR metal ✓ A complex ion is an ion bonded to ligand(s)/surrounded by ligands ✓	4	ALLOW [Ar]3d ⁸ ALLOW electron configurations with 4s ⁰ ALLOW for example Ni ³⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ OR [Ar]3d ⁷ No other Ni ions are acceptable ALLOW lone pair forms a coordinate bond to Ni ²⁺ (which will also collect the coordinate bond mark) ALLOW diagram of [Ni(H ₂ O) ₆] ²⁺ complex ion for 2nd marking point
			Coordinate bond/dative covalent mentioned at least once in the right context ✓	3	
	(b)	(i)	$ \begin{bmatrix} OH_2 & 90 & \circ \\ H_2O/I_{I_1} & OH_2 \\ H_2O & OH_2 \end{bmatrix} $ 3D diagram \checkmark 90° bond angle \checkmark	2	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': $ \begin{bmatrix} H_2O_{H_2}O$

Quest	ion	er	Mark	Guidance
(b)	(ii)	A: NiCl ₄ ^{2−} ✓		ALLOW [NiCl ₄] ²⁻ DO NOT ALLOW Ni(Cl ⁻) ₄ ²⁻
		B : Ni(OH) ₂ ✓	2	ALLOW $Ni(OH)_2(H_2O)_4$ OR $[Ni(OH)_2(H_2O)_4]$
	(iii)	C: [Ni(NH ₃) ₆] ²⁺ ✓	1	Square brackets essential 2+ charge must be outside square brackets ALLOW [Ni(OH) ₆] ⁴⁻
	(iv)	0.		1 mark for each side of equation
		$ [Ni(H2O)6]2+ + 6NH3 \longrightarrow [Ni(NH3)6]2+ + 6H2O $	2	ALLOW equilibrium sign ALLOW ECF from (iii) for the following: [Ni(NH ₃) ₄] ²⁺ (wrong number of NH ₃) Any 6 coordinate Ni ²⁺ complex with NH ₃ and H ₂ O ligands, e.g. [Ni(NH ₃) ₄ (H ₂ O) ₂] ²⁺ , [Ni(NH ₃) ₅ (H ₂ O)] ²⁺ , etc
				ALLOW from $[Ni(OH)_{6}]^{4-}$, $[Ni(H_{2}O)_{6}]^{2+} + 6OH^{-} \longrightarrow [Ni(OH)_{6}]^{4-} + 6H_{2}O$ OR $[Ni(H_{2}O)_{6}]^{2+} + 6NH_{3} \longrightarrow [Ni(OH)_{6}]^{4-} + 6NH_{4}^{+}$
(c)	(i)	C ₁₀ H ₈ N ₂ ✓	1	ALLOW atoms in any order
	(ii)	4 ✓	1	
	(iii)	Chung Rumin Rumin		Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left.
			2	1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper:
		One mark for each structure 2nd structure must be correct mirror image of 1st structure		ALLOW structures with Ni in centre

Quest	tion	er	Mark	Guidance
(c)	(iv)	3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with Ni ²⁺ ✓		ALLOW aromatic rings
		2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows:		H ₂ Q OH ₂
		IF Ni is bonded to 4 H ₂ Os (bond to O) with a bond to N end of two 4,4'-bipy structure		H_2O O O O O O O O O O
		OR IF each N of 4,4'-bipy is bonded to a Ni bonded to 4 H₂Os (bond to O), award 1 mark ✓	3	$\begin{array}{c c} H_2O & OH_2 \\ \hline \hline & N_1 & OH_2 \\ \hline & H_2O & OH_2 \\ \hline & H_2O & OH_2 \\ \hline \end{array}$
		IF correct repeat unit is shown, award 2 marks ✓✓ H ₂ O Ni H ₂ O OH ₂ OH		Charge NOT needed. Square brackets NOT needed Bonds around Ni do NOT need to be shown 3D Accept bonds to H ₂ O (does NOT need to go to 'O') ALLOW the following structure for repeat unit for all 2nd and 3rd marks:
		Total	21	H_2O OH_2 n

Question	er	Mark	Guidance
3	step 1 $Cu + 4HNO_3 \longrightarrow Cu^{2+} + 2NO_3^- + 2NO_2 + 2H_2O$ OR $Cu + 2H^+ + 2HNO_3 \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$ OR $Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$ $tep 2$ 2 equations with 1 mark for each $Cu^{2+} + CO_3^{2-} \longrightarrow CuCO_3 \checkmark$ $2H^+ + CO_3^{2-} \longrightarrow H_2O + CO_2 \checkmark$ $tep 4$ $2Cu^{2+} + 4I^- \longrightarrow 2CuI + I_2 \checkmark$	Mark 4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW $Cu(NO_3)_2$ for $Cu^{2+} + 2NO_3^-$ AWARD 2 MARKS for a combined equation: $Cu^{2+} + 2H^+ + 2CO_3^{2-} \longrightarrow CuCO_3 + H_2O + CO_2 \checkmark \checkmark$ DO NOT ALLOW $2H^+ + CO_3^{2-} \longrightarrow H_2CO_3$ ALLOW $2Cu^{2+} + 4KI \longrightarrow 2CuI + I_2 + 4K^+$ ALLOW $Cu^{2+} + I^- \longrightarrow Cu^+ + 1/2I_2$
			ALLOW $CU^{-1} + 1 \longrightarrow CU^{-1} + \frac{1}{2}I_2$

IF answer = 67.6%, award 5 marks. Ignore any attempted equation in step 4 IF answer = 33.8% AND IF Cu^{2+}/I_2 in step 4 equation shown with 1:1 molar ratio, award 5 marks for ECF amount $S_2O_3^{2-}$ used = $0.100 \times \frac{29.8}{1000} = 2.98 \times 10^{-3}$ mol \checkmark Work BUT amount $I_2 = 1.49 \times 10^{-3}$ mol \checkmark ECF amount Cu^{2+} in original 250 cm ³ = 10 x 2.98 x 10 ⁻³ ECF ECF ALLO Answer = 1.8923 g \checkmark percentage Cu in brass = $\frac{1.8923}{2.80} \times 100$ ECF ALLO Answer = 67.6% \checkmark MUST be to one decimal place (in the question) 5	uidance
$= 1.8923 \text{ g} \checkmark$ $= 67.6\% \checkmark$	There is an alternative answer, check to see if there is any CF credit possible using working below //Orking must be to 3 SF throughout until final % mark UT ignore trailing zeroes, ie for 0.490 allow 0.49 CF answer above CF 10 x answer above CF 63.5 x answer above
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CF $\frac{\text{answer above}}{2.80} \times 100$ nswer must be to one decimal place LLOW % Cu = 67.5 % IF mass of Cu has been rounded to .89 g in previous step common ECFs: .76% 10 missing
Total 9	esponse, 4/5 marks for calculation (moles Cu ²⁺ incorrect)

Qu	esti	ion	Expected Answers	Marks	Additional Guidance
4	а		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2+} + 2e^{-}\checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^{-} \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$	3	WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only
			$4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$		NO ECF for overall equation i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution ✓	1	ALLOW ligand exchange
		ii	$[\operatorname{Cr}(H_2O)_6]^{3+} + 6\operatorname{NH}_3 \longrightarrow [\operatorname{Cr}(\operatorname{NH}_3)_6]^{3+} + 6\operatorname{H}_2O$	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓	2	First mark is for the idea of two coordinate bonds
			Lone pairs on two O atoms ✓		ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C) Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
Question	-	Marks 3	IGNORE any charges shown ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer.
	Cr.		Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: OR 2nd mark for reflected diagram of SECOND stereoisomer.
	✓✓ For each structure		The diagram below would score the 2nd mark but not the first

Question	Expected Answers	Marks	Additional Guidance
е	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
	A : N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: $(NH_4)_2Cr_2O_7$
	lons: NH ₄ ⁺ ✓ Cr ₂ O ₇ ²⁻ ✓		IF candidate has obtained NH ₄ CrO ₄ for A, ALLOW NH ₄ ⁺ DO NOT ALLOW CrO ₄ ⁻
	B : Cr ₂ O ₃ ✓		
	Correctly calculates molar mass of C = 1.17 × 24.0 = 28.08 (g mol ⁻¹) ✓		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
	C : N ₂ ✓		
	Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
	Total	22	