

(a	three valid features listed without explanation			
	any three features explained from:			
	copper/metal is a <u>good</u> conductor (of heat) NOT of electricity			
	black is <u>good</u> absorber/ <u>bad</u> reflector ignore emitter			
	insulating material will <u>reduce</u> heat lost/conducted away (from pipes/sheet) NOT <u>prevents</u> heat loss owtte			
	glass/trapping of air reduces/prevents convection/warm air being blown away			
	glass produces greenhouse effect/reference to far and near I.R.	[max 3]		
(b)	$38 - 16$ OR 22 $mc\theta$ OR $250 \times 4200 \times$ candidate's temperature difference 2.31×10^7 (J) e.c.f. from previous line 9.24×10^7 J OR e.c.f. from previous line \times 4 correctly evaluated no unit penalty if J seen anywhere in (b) clearly applied to an energy	[1] [1] [1]		
(c)	valid <u>explanation</u> relating to at least one of the reasons below: note: if no explanation, this mark is not awarded even if more than three reasons given	[1] are		
	any three reasons from: which direction roof faces estimate output of panels household needs / whether household will use all hot water cost of panel / installation time to recoup cost whether roof is shaded relevant environmental consideration (e.g. not using wood or other fuel to heat water)) [max 3]		
(d)	nuclei join together, accept hydrogen for nuclei to produce a different element / helium (and energy)	[2]		

			[Total: 6]
	(c)	conduction takes place copper a good conductor/conduction is rapid/heat flows to equalise temperature	B1 B1
	(b)	left hand/palm (facing matt black side gets hotter) OR hand facing matt black side (gets hotter) matt black side is a better emitter/radiator (of heat than shiny side)	B1 B1
		(ii) air (between plate and hands) is a poor conductor/does not conduct	B1
3	(a	(i) heated air/warm air rises/moves up (not sideways)	B1
			[Total 6]
		made of insulator OR example of insulator to reduce/prevent (loss of heat by) convection/radiation/evaporation OR to prevent steam/hot air leaving	В1
	(b)	add a stopper/lid/bung/cover/top to reduce/prevent (loss of heat by) convection/conduction/radiation/evaporation OR to prevent steam/hot vapour leaving	M1 B1
		(ii) surface/silver (of walls) is good reflector/poor absorber (of radiation) surface/silver (of walls) is poor emitter (of radiation)	B1 B1
2	(a	(i) mention of vacuum OR glass is a poor conductor OR vacuum/gap between walls has no molecules/atoms/particles	B1

4	(a		ck can/B loses heat energy quicker/cools faster polished can loses heat energy slower/cools slower	M1	
			ck radiates/emits more OR polished radiates/emits less ore anything about absorption	A1	[2]
	(b)		any four from:	B4	
			viable experiment e.g. pour in water and measure temperature ignore methods with external thermometers (for this point only)		
			pour (hot) water into both cans to same level/same amount		
			place thermometers in <u>same position</u> relative to each can/detail relating to stirring		
			thermometers not touching the metal of can		
			observe change of temperature		
			correct detail of timing		
			repeat readings		[4]
		(ii)	use tiles as lids reduce convection/evaporation (to room)	M1 A1	
			OR alternative method put tiles under cans reduce, ignore prevent, conduction (to bench)	(M1) (A1)	
			for both methods, ignore other modes of heat transfer, ignore place tiles around can		[2]
	(c)	black can/B		M	
		bla	ck absorbs (radiation) better, ignore anything about emission	A1	[2]

5	(a	(i)	(metals/they are) (good) conductors (of heat)	B1	[1]
		(ii)	(at hot end) molecules vibrate (more) or electrons identified as mechanism of conduction	B1	
			molecules collide with their neighbours or electrons move faster/have more energy	B1	
			energy/vibration passed on or electrons pass on energy/reach far end/free to move	В1	[3]
	(b)	imr det	ermine mass of spoon (condone weigh provided word mass is used in answer) nerse spoon in water/liquid ermine increase in volume/overflow m/V or density = mass/volume	B1 B1 B1 B1	[4]
6	(a)	(i)	current		
		(ii)	p.d. OR potential difference OR voltage	B1	
			Both required		
	(b)		$R_1 + R_2$ OR 1.2 + 3.6 OR 4.8 (k Ω) 9.0 / 4.8 = 1.875 (mA) OR 9.0/4800 = 1.875 × 10 3 (A)	С	
			tmeter reading = 6.75 V *Unit penalty applies	A1	
		Vol = [3	tmeter reading = [R ₁ / (R ₁ + R ₂)] V 3.6 / (1.2 + 3.6)] × 9.0 .75 V *Unit penalty applies	(C1) (C1) (A1)	
	(c)	Ču	fire) temperature of thermistor rises and its resistance falls rrent (through thermistor and relay coil) rises / flows	B1 B1	
			voltage / p.d. across / of relay coil rises gnetic field of relay closes switch (and bell rings)	B1	[7]
		*Ap	oply unit penalty once onl		