

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 43 Minutes

2002

Physics

Mark Scheme

AQA AS & A LEVEL 3.6 Further mechanics and thermal physics (A-level only)

Percentage

%

www.exampaperspractice.co.uk

Score

/36

1
(a)
$$\Delta T = \left(\frac{\Delta Q}{mc}\right) = \frac{8.5 \times 10^3}{4200 \times 0.12} \checkmark$$
(b)
$$\left(\frac{\Delta T}{\Delta t} = \frac{\Delta Q}{Mc}\right) = \frac{100 - 26}{\Delta t} = \frac{8.5 \times 10^3}{0.41 \times 4200} \checkmark$$
(c)
$$t = 15 \text{ s } \checkmark$$

2

[4]

For more help please visit our website www.exampaperspractice.co.uk

(heat supplied by glass = heat gained by cola)

2.(i)

= 10°C ~ 8°C √

(use of $m_{g} c_{g} \Delta T_{g} = m_{c} c_{c} \Delta T_{c}$) 1st mark for RHS or LHS of substituted equation $0.250 \times 840 \times (30.0 - T_f) = 0.200 \times 4190 \times (T_f - 3.0)$ 🗸 2nd mark for 8.4°C $(210 \times 30 - 210 t_{\rm f} = 838 T_{\rm f} - 838 \times 3)$ *T*_f = 8.4(1) ^(°C) ✓ Alternatives: 8°C is substituted into equation (on either side shown will get mark)√ resulting in 4620J~4190J ✓ or 8°C substituted into LHS \checkmark (produces $\Delta T = 5.5$ °C and hence) = 8.5°C ~ 8°C 🗸 8°C substituted into RHS ✓ (produces $\Delta T = 20^{\circ}C$ and hence)

(ii)	(heat gained by ice = heat lost by glass + heat lost by cola) NB correct answer does not necessarily get full marks
	(heat gained by ice = $mc\Delta T + ml$) heat gained by ice = $m \times 4190 \times 3.0 + m \times 3.34 \times 10^{\circ}$ (heat gained by ice = $m \times 346600$) 3° mark is only given if the previous 2 marks are awarded
	heat lost by glass + heat lost by cola = 0.250 × 840 × (8.41 − 3.0) + 0.200 × 4190 × (8.41 − 3.0) ✓ (= 5670 J)
	(especially look for m × 4190 × 3.0) the first two marks are given for the formation of the substituted equation not the calculated values
	<i>m</i> (=5670 / 346600) = 0.016 (kg) ✓ <i>if 8</i> °C is used the final answer is 0.015 kg
	or (using cola returning to its original temperature) (heat supplied by glass = heat gained by ice) (heat gained by glass = $0.250 \times 840 \times (30.0 - 3.0)$) heat gained by glass = $5670 \text{ (J) } \checkmark$ (heat used by ice = $mc\Delta T + ml$) heat used by ice = $m(4190 \times 3.0 + 3.34 \times 10^5) \checkmark (= m(346600))$
	<i>m</i> (=5670 / 346600) = 0.016 (kg) ✓

the energy required to change the state of a unit mass of water to steam / gas ✓ when at its boiling point temperature / 100°C / without a change in temperature) ✓

> allow 1 kg in place of unit allow liquid to vapour / gas without reference to water don't allow 'evaporation' in first mark

2

2

(b) (i) thermal energy given by copper block (= mc∆T) = 0.047 × 390 × (990 – 100) = 1.6 × 10⁴ (J) ✓ 2 sig figs ✓ can gain full marks without showing working a negative answer is not given credit sig fig mark stands alone

(ii) thermal energy gained by water and copper container
(= mc∆T_{water} + mc∆T_{copper})
= 0.050 × 4200 × (100 - 84) + 0.020 × 390 × (100 - 84)
or
= 3500 (J) ✓ (3485 J)
available heat energy (= 1.6 × 10⁴ - 3500) = 1.3 × 10⁴ (J) ✓

allow both 12000 J and 13000 J

allow CE from (i) working must be shown for a CE take care in awarding full marks for the final answer – missing out the copper container may result in the correct answer but not be worth any marks because of a physics error (3485 is a mark in itself) ignore sign of final answer in CE (many CE's should result in a negative answer)

2

(iii) (using Q = ml)

 $m = 1.3 \times 10^4 / 2.3 \times 10^6$ = 0.0057 (kg) ✓ Allow 0.006 but not 0.0060 (kg) *allow CE from (ii) answers between 0.0052 → 0.0057 kg resulting from use of* 12000 and 13000 J

[7]

4 .(a)	

(ii)

(i) .	Appreciates pV should be constant for isothermal change statement) $W = p\Delta V$ is TO	(by working	or
	Allow only products seen where are approximately 150 for 1 mark Penalise J as unit here		
			M1
	Demonstrates pV = constant using 2 points (on the line) set equal to each other or conclusion made or shows that for V doubling that p halves (worth 2 marks) need to see values for p and V Products should equal 150 to 2 sf		
	Accept statement that products are slightly different so not quite isothermal		
	Demonstrates pV = constant using 3 points (on the line) with conclusion Need to see values for p and V		A1
А	Products should equal 150 to 2 sf Accept statement that products are slightly lifferent so not quite isothermal		
	tic <u>therefore</u> no heat transfer or tic <u>therefore</u> Q = 0	A1	3
		B1	
	s done <u>by</u> gas <u>therefore</u> <i>W</i> is <u>negative</u> or s done <u>by</u> gas <u>therefore</u> energy is removed from stem		
decrea <u>therefo</u> done b A	negative <u>therefore</u> internal energy of gas ses or energy is removed from the system <u>re</u> internal energy of gas decreases or work y the gas <u>so</u> internal energy decreases	B1	
_	$-\Delta U = -W \text{ or } \Delta U = -W$	B1	
			3

(iii) Uses pV/T = constant or uses pV=nRT or uses pV=NkTe.g. makes T subject or substitutes into an equation with p_A and V_A or p_c and V_c (condone use of n = 1) or their $\frac{(pV)_A}{(pV)_c}$ $V_a read off range$ $= 2.5 to 2.6 (\times 10^{-4})$ $p_A = 600 \times 10^3$ $V_c read off range$ $= 8.5 to 8.6 (\times 10^{-4})$ $p_c = 140 \times 10^3$

C1

Correct substitution of coordinates (inside range) into $\frac{(pV)_{A}}{(pV)_{c}}$ With consistent use of powers of 10

	$(pV)_{\scriptscriptstyle A}$ range is 150 to 156 and $(pV)_c$ range is 119 to 120.4		
		C1	
	1.2(5) Allow range from 1.2 to 1.3		
	Accept decimal fraction : 1		3
		A1	
(b)	Energy per large square = 10(J) or <u>states</u> that work done is equal to area under curve (between A and B) or energy per small square = 0.4(J) or square counting seen on correct area		
	Must be clear that area represents energy either by subject of formula or use of units on 10 or 0.4 Alternative: W = area of a trapezium (with working) or $W = P_{mean} \times \Delta V$ or $W = 450 \times 10^3 \times 2.5 \times 10^{-4}$ or $W = area of a rectangle + area of a triangle (with working)$		
		B1	
	Number of large squares = 10.5 to 11.5 seen <u>and</u> (<i>W</i>) = number of squares × area of one square (using numbers) Range = 105 to 115 (J) Or		
	Number of small squares = 263 to 287 seen <u>and</u> (<i>W</i>) = number of squares × area of one square (using numbers) Range = 105 to 115 (J) States that actual work done would be lower because of curvature of line	B1	2
(c)	(Total energy removed per s =) 4560 (J) or number of cycles per s = 40 or (Mass per second =) 114 ÷ 68400 in rearranged form or their energy ÷ (c ΔT) or their energy ÷ 68400		
		C1	

0.067 (kg) seen Allow 0.066 (kg) here or allow V / t = 1.67 × 10⁻³ ÷ 1100 or $(\frac{V}{t}) = \frac{E}{\rho C \Delta \theta}$ and correct substitution seen Condone E = 114 (J) or temperature = 291(K) = 0.061 × 10⁻³ or 6.06 × 10⁻⁵ (m³)

3

C1

A1

5 .B

[1]

(it takes) 130 J / this energy to raise (the temperature of) a mass of 1 kg (of lead) by 1 K / 1 °C (without changing its state) ✓

1 kg can be replaced with unit mass. Marks for 130J or energy. +1 kg or unit mass. +1 K or 1 °C. Condone the use of 1 °K

 (b) (using Q = mcΔT + ml) = 0.75 × 130 × (327.5 - 21) + 0.75 × 23000 ✓ (= 29884 + 17250) = 47134 ✓ = 4.7 × 10⁴ (J) ✓ For the first mark the two terms may appear separately i.e. they do not have to be added.

Marks for substitution + answer + 2 sig figs (that can stand alone).

3