

(b)	Ice - Vibrate (about fixed positions); Water - Change position/ move over each other; Steam - EITHER Random movement; OR Range of speeds;	Ignore ideas of - collisions - filling container - bonds - freedom - flowing Accept - oscillate - shake - jiggle Accept for change of position - move slowly - move around Allow slide past each other Accept quickly for range of speeds	3

(Total for Question $1=7$ marks)

EXAM PAPERS PRACTICE
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { (c) } & \begin{array}{ll}\text { Any two of } \\
\text { MP1 Idea that there is cold gas/ air/ oxygen just } \\
\text { above the liquid (surface); } \\
\text { MP2 Idea that the gas/ air/ oxygen in the room is } \\
\text { warmer; }\end{array} & \begin{array}{l}\text { Ignore "heat rises" }\end{array} \\
\begin{array}{ll}\text { MP3 Idea that convection currents in air (above } \\
\text { liquid surface) unlikely; }\end{array} & \begin{array}{l}\text { Allow: } \\
\text { warm air won't fall, } \\
\text { cool air won't rise } \\
\text { Ignore density }\end{array}
$$ \\
arguments \\
Allow: \\
gas is a poor \\
conductor \\
Allow: \\
flask would burst if it \\

had a lid\end{array}\right]\)| MP4 Idea that (evaporated) oxygen / air / gas would |
| :--- |
| insulate the surface; |
| MP5 Idea that oxygen/ gas would build up pressure |
| in a sealed vessel; |

Total for question $2=10$ marks

EXAM PAPERS PRACTICE

Question number	Answer			Notes	Marks
3 (a)	any one line co all three lines	ect for one man rect for two	rk; marks;; particles ether, moving about lide past one another , moving quickly at random ther, vibrating about xed positions	more than one line to a box does not score	2
(b) (i)	$\begin{aligned} & 18 ; \\ & 192 ; \end{aligned}$			ignore "molecules slow down"	2
		Temperature in ${ }^{\circ} \mathrm{C}$	Temperature in kelvin		
	room temperature	18	291		
	triple point of ethyne	-81	192		
(ii)	decreases / OWTTE;				1
(iii)	remains constant / no change / nothing;				1

EXAM PAPERS PRACTICE

Question number	Answer	Notes	Marks
4 (a) (i)	smoke particles in air (in smoke cell) OR pollen on water OR dust particles in air;	Accept correct description of Brownian motion applied to unspecified particles in a suitable medium	
(ii)	Any two of - MP1 Idea that tiny/smaller particles are hitting; MP2 Larger (observed) particles are moved; MP3 Idea of random motion of larger particles; (b) Any six ideas about arrangement and motion of particles Max 2 for each state Solid - Regular pattern OR close packed; Vibration in position; Little space between particles; Liquid - Iregular pattern; Able to move over/past other particles; Little space between particles; Gas - No pattern; Able to move freely/fast; Larger space between particles;	Allow zig-zag movement	

EXAM PAPERS PRACTICE

Question number	Answer	Notes	Marks
5 (a)	Any three of evaporation as liquid \rightarrow gas/vapour; higher (kinetic) energy/faster particles/molecules leave/ evaporate; reducing (average) energy of particles left /heat remaining; reducing temperature; (b) (i)	Accept: water/sweat \rightarrow gas/vapour	
(still covered in) sweat /evaporation mentioned; particles leaving take heat with them not generating as much 'new' heat;	Ignore: conduction, convection and radiation losses Ignore: reference to shiny sheet	2	
(ii)	Either barrier to reduce particle movement; reducing convection / evaporation; OR (shiny) surface reflects/poor absorber; reducing radiation /IR losses;	Accept: barrier to air currents / air is trapped	2

Question number	Answer	Notes	Marks
6 (a)	any four from - (at lower temp) particles move at lower speed / lower kinetic energy; on average; so hit sides less often / with less energy; reducing force / pressure; tension in rubber; pulls balloon material into smaller size;	Accept: momentum arguments	4

Question number	Answer	Notes	Marks
6 (b)	Any three explanations of faulty method, with a workable improvement. Note that the fault needs to be properly identified, not just "the method is faulty / inadequate", or the method numbered with a comment that "Step 2 is wrong"	CREDIT any explanation OR improvement, up to three of each, wherever seen i.e. the "Fault" and "Improvement" marks do not have to form a matching pair.	max 6
	Fault \#1 'different time in freezer' does not give range of temps / always cools to same temp; Improvement \#1	Way to get range of temp; e.g use water bath(s), use freezer(s) set to different temps	Allow answers that mention high and/or low temperatures
Fault \#2 Difficult /hard to 'measure temp of balloon with thermometer' OR this doesn't measure temp of gas inside; Improvement \#2 Measure temperature of surroundings ; e.g. inside of freezer, water bath or air Fault \#3	Needs to be more than: can't + statement from stimulus Measuring / plotting 'size' is imprecise /too vague; Improvement \#3 measure / plot a more precise quantity; e.g. volume / length / diameter / circumference	Ignore reference to room temperature	

	Fault \#4 'measure size next to ruler' is an inaccurate method / difficult to measure (with a ruler) / comment on shape ; Improvement \#4 Sensible method to measure (a relevant quantity); e.g. measure volume by displacing water, measure circumference using tape/string, use set squares with ruler Fault \#5 repeating does not make it a fair test; Improvement \#5 control a named variable that does; e.g. starting volume of balloon Fault \#6 balloon may warm up between leaving the freezer and being measured; Improvement \#5 method of minimising this; e.g. idea of measuring quickly, having whole experiment at the measured temperature	Allow mention of parallax NOT "time in freezer"	

