

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

Edexcel
AS & A LEVEL

Mark Scheme

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	two marks CI in CI ₂ is 0 Goes to +1 in HCIO Goes to -1 in HCI All three correct for two marks Any two correct for one mark Ignore correct oxidation numbers for other elements If three correct numbers given without saying what species they are in max 1 for these two marks Third mark CI/CI ₂ /the same element is both oxidized and reduced	Only 'Cl ⁺ ' for oxidation number + Only 'Cl ⁻ ' for oxidation number - (treat each separately) For each incorrect oxidation number change for O and H, lose one mark.	3
	Allow same molecule/species/ type of atom is both oxidized and reduced if answer elsewhere has been in terms of chlorine OR CI/CI ₂ /the same element both increases and decreases in oxidation number OR Chlorine both loses and gains electrons (1)	0 to +1 described as reduction and/or 0 to -1 described as oxidation (for third mark)	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	Equilibrium moves to the left / moves in reverse direction / moves to increase concentration of reactants (1) To use up (some of) added HCI/ to react with added HCI/ to stop formation of HCI/ restores equilibrium by producing more chlorine and water (1) Second mark depends on first Allow 'moves to decrease concentration of products/HCI' for both marks	Just "reverse reaction is favoured" Just "to counteract the change in the system" To minimise effect of HCI	2

Question Number	Acceptable Answers		Reject	Mark
1 (b)(i)	CIO ⁻ + 2H ⁺ + 2e ⁽⁻⁾ \rightarrow CI ⁻ + H ₂ O ALLOW CIO ⁻ + 2H ⁺ \rightarrow CI ⁻ + H ₂ O - 2e ⁽⁻⁾	(1)	Equations without electrons	2
	$2I^{-} \rightarrow I_{2} + 2e^{(-)}$ ALLOW $2I^{-} - 2e^{(-)} \rightarrow I_{2}$ Allow multiples Ignore state symbols even if incorrect	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(ii)	$CIO^{-} + 2H^{+} + 2I^{-} \rightarrow CI^{-} + H_{2}O + I_{2}$	Equations including	1
		electrons	
	Mark independently. No TE on 21(b)(i)		

Question Number	Acceptable Answers		Reject	Mark
1(b)(iii)	Moles thiosulfate = $(24.20 \times 0.0500 / 1000)$ = $1.21 \times 10^{-3} / 1.2 \times 10^{-3} / 0.00121 / 0.0012$ (mol) Moles iodine = half moles of thiosulfate = $6.05 \times 10^{-4} / 6.1 \times 10^{-4} / 0.000605 / 0.00061$ (mol) Correct answer without working	(1) (1) (2)	1.20 x 10 ⁻³ (mol) 1x 10 ⁻³ / 0.001 6.0 x 10 ⁻⁴ (mol) 6 x 10 ⁻⁴ (mol)	2

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iv)	Moles $CIO^- = 6.05 \times 10^{-4} \text{ (mol)}$		1
	TE on (b)(ii) and (b)(iii):		
	If ratio $CIO^-:I_2=2:1$ answer is 2 x answer to (b)(iii)		
	If ratio $CIO^-:I_2 = 1:2$ answer is half of answer to (b)(iii)		

Number			
1 (b)(v)	Concentration = $(6.05 \times 10^{-4} \times 1000/25)$ = $2.42 \times 10^{-2} / 0.0242 / 0.024 / 2.4 \times 10^{-2}$ (mol dm ⁻³) TE. Answer to (b)(iv) x 1000÷ 25	Answers to 1 significant figure	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(vi)	(Minimum) amount of I ⁻ to react with OCI ⁻ = 2 x answer to (b)(iv) = 2 x 6.05 x 10^{-4} = 1.21 x 10^{-3} (mol) (1)		2
	Allow TE for 2 x answer to (b)(iv) Ignore s.f.	"KI is in excess" if no calculation has been done.	
	Moles of I ⁻ (9.04 x 10 ⁻³) is more than this number of moles of CIO ⁻ / I ⁻ is in excess / KI is in excess / so that all the CIO ⁻ can react (1)		
	OR $9.04 \times 10^{-3} \text{ mol I}^{-} \text{ can react with}$ $4.52 \times 10^{-3} \text{ mol OCI}^{-}$ (1) Ignore s.f.		
	TE from incorrect equation in (b)(ii)		
	Moles OCI^{-} (6.05 x 10^{-4}) is less than this/ I^{-} is in excess / KI is in excess / so that all the CIO^{-} can react (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(vii)	0.30 x 100 / 24.2 (=1.2396694) = 1.24/ 1.2 %		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(viii)	Judgement (of colour change) at end point / adding starch too early in the titration / jet of burette not filled	Some potassium iodide did not dissolve	1
	Errors must cause an increase in titre.	Leaving funnel in burette	
	Ignore		
	Just "Human error"	Errors which affect both the students titre and an	
	Just 'overshot endpoint'	accurate titre using the same solutions	
	Transfer errors / spillage	e.g. impu	
	Errors due to misreading burette / pipette	Solutions	

Question Number	Acceptable Answers	Reject	Mark
1 (c)	(CI radicals) break down ozone (layer)/ozone depletion / ozone (layer) thinning	Global warming	1
		Causes acid rain	
	Allow damage ozone (layer)/ react with ozone		

Total = 17 marks

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$ (Allow atoms in H_2CO_3 in any order) Or $H_2O + CO_2 \rightarrow H^+ + HCO_3^-$ Or $H_2O + CO_2 \rightarrow 2H^+ + CO_3^{2-}$ Or H_3O^+ in place of H^+		1

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$2H^{+} + CO_{3}^{2-} \rightarrow H_{2}O + CO_{2}$	H ₂ CO ₃ as a product	2
	LHS (1) RHS (1) OR	$H^+ + CO_3^{2-} \rightarrow HCO_3^-$	
	$2H_3O^+ + CO_3^{2-} \rightarrow 3H_2O + CO_2$ LHS (1) RHS (1)	Any other ions	
	IGNORE STATE SYMBOLS, EVEN IF INCORRECT	including spectator ions (e.g. Ca ²⁺ , Cl ⁻) in	
	IGNORE ⇒ arrows	the equation scores zero	

Question Acceptable Answers Reject	Mark
Number 2 (b) (i) dilute hydrochloric acid measuring cylinder water is not somehow evident Conical flask and a delivery tube leaving the conical flask (1) IGNORE "heat" beneath conical flask Inverted measuring cylinder with collection over water shown and cylinder above mouth of delivery tube (1) ALLOW collection over water to be shown/implied in the diagram without labels or other annotation	2

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	1

Question	Acceptable Answers	Reject	Mark
Number			
2 (b) (iii)	(224 ÷ 24000 =) 0.009333/9.333 x 10 ⁻³ (mol)	"0.009" as answer	1
	Ignore SF except 1 SF Ignore any incorrect units		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (iv)	$CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g/aq)$		1
	ALL FOUR state symbols must be correct for this mark		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (v)	(Mass of 1 mol CaCO ₃ = 40 + 12 + 3 x 16) = 100 g ALLOW just "100" ALLOW any incorrect units ALLOW "100.1 g " OR just "100.1" (Reason: this		1
	uses the Periodic Table value of $A_r = 40.1$ for Ca)		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vi)	(Mass of $CaCO_3 = 100 \times 0.009333$) = 0.9333 (g) (1)		2
	IGNORE sig figs including 1 sf here		
	NOTE: Moles of CaCO ₃ consequential on answers to (b)(iii) and (b)(v)		
	[NOTE: if $A_r = 40.1$ used for Ca, then the answer = 0.9339 (g)]		
	Percentage of $CaCO_3$ in the coral = 100 x 0.9333 /1.13 = 82.6% (1)	Final % answer is not given to 3 sf	
	NOTE: If mass CaCO ₃ used is 0.93, final answer is 82.3%		
	[NOTE: if $A_r = 40.1$ used for Ca, then the answers = 0.9339 (g) and 82.7%]		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vii)	(Different samples of) coral have different amounts of CaCO ₃ /different proportions of CaCO ₃ / different "levels" of CaCO ₃ ALLOW "calcium carbonate" for CaCO ₃ OR	Answers that do not include any mention of CaCO ₃ References to solubility of CO ₂ in water	1
	Only one sample of coral (was) used	References to repeating the experiment at a different temperature	

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	$(COOH)_2 \rightarrow 2CO_2 + 2H^+ + 2e^-$ (1)		2
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$5(COOH)_2 + 2MnO_4^- + 6H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ ALLOW multiples	Equation with electrons left in	1
	ALLOW $5(COOH)_2 + 2MnO_4^- + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O + 10H^+$		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (iii)	Moles of $MnO_4^- = 11.30/1000 \times 0.010 = 1.13 \times 10^{-4}$ (mol) (1)	TE for 5th mark if % is greater than 100%	5
	Moles of $(COOH)_2$ in 10 cm ³ = 1.13 x 10 ⁻⁴ x 5/2 = 2.825 x 10 ⁻⁴ (mol) (1)		
	Moles of $(COOH)_2$ in whole sample = $2.825 \times 10^{-4} $	Rounding errors once in first 4 marks Final answers not quoted to 2 dp	
	Mass of acid = $0.01412(5)x 90 = 1.27 g$ (1)		
	% in leaves = 1.27/250 x 100 = 0.51 (%) (1)		
	If ratio 5 : 2 is not used, maximum (4)	quoted to 2 dp	
	e.g. if ratio 2:5 is used then percentage in leaves = 0.08%		

Question Number	Acceptable Answers		Reject	Mark
2 (a) (iv)	± 0.05 cm ³	(1)		2
	$[(0.05 \times 2) / 11.3] \times 100 = 0.88\%$	(1)		
	ALLOW ±0.025 cm ³	(1)		
	[(0.025 x 2) / 11.3] x 100 = 0.44%	(1)		
	ALLOW TE for second mark			

Question Number	Acceptable Answers	Reject	Mark
2 (a) (v)	Any two from:		2
	Only one titration carried out (1)	Errors in technique e.g. transfer errors	
	Leaves may contain other substances that MnO ₄ could oxidize/ react with (1)		
	Not all ethanedioic acid extracted from leaves (1)		
	ALLOW temperature too low / below 60°C (1)		
	Different amounts of acid from different leaves (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR	References to weak acid	2
	rhubarb leaves are toxic /harmful (1)	Rhubarb is toxic	
	(Unnecessary because) it is (very) dilute / present in small amounts (1)		
	ALLOW because is not absorbed through the skin		
	Second mark is independent of the first		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vii)	(Cloudiness due to) MnO ₂ (solid /precipitate) (1) Ignore colour of precipitate		2
	EITHER Suitable use of E^{θ} (+0.34V)		
	OR MnO ₄ ions are a strong enough oxidizing agent to oxidize Cl ions (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	$(1s^2)2s^22p^63s^23p^63d^5$ (4s ⁰)	4s ² 3d ³	1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Octahedral		1