

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme Module 2: Foundations in chemistry

www.exampaperspractice.co.uk

1. (i) O goes from -2 to $0 \checkmark$

Oxidation numbers may be seen with equation

N goes from +5 to +4 \checkmark

N is reduced **AND** O is oxidised ✓

Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O

ALLOW ECF for third mark for N is oxidised **and** O is reduced if incorrect oxidation numbers support this

IGNORE references to strontium

IGNORE references to electron loss OR gain

DO NOT ALLOW 'One increases and one decreases'

3

(ii) Calculates correctly:

Mol of Sr(NO₃)₂ =
$$\frac{5.29}{211.6}$$
 = 0.0250 \checkmark

ALLOW 0.025

Calculates correctly:

Mol of gas =
$$5/2 \times 0.0250 = 0.0625$$

ALLOW ECF for first answer \times 2.5 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Calculates correctly:

Volume of gas =
$$24.0 \times 0.0625 = 1.50 \text{ dm}^3$$

ALLOW ECF for second answer \times 24(.0) as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

DO NOT ALLOW ECF of first answer \times 24(.0) (which gives 0.6(0) dm³) as this has not measured the volume of any gas, simply 0.0250 mol of solid $Sr(NO_3)_2$ converted into a gas

i.e. This answer would give one mark

 $ALLOW 1.5 dm^3$

ALLOW ECF producing correct volume of NO_2 only i.e. 1.2(0) dm³ would give **two** marks

OR

ALLOW ECF producing correct volume of O_2 only i.e. 0.3(0) dm³ would give **two** marks

3

1

[6]

2.	(i)	Mg ✓ oxidation number changes from 0 to (+)2 OR oxidation number increases by 2 ✓ ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons	2	
	(ii)	Mg/solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution ✓		
		bubbles OR fizzes OR effervesces OR gas produced ✓ IGNORE metal reacts IGNORE temperature change IGNORE steam produced		
		DO NOT ALLOW carbon dioxide gas produced DO NOT ALLOW hydrogen produced without gas	2	
				[4]
3.	(i)	because Ca has changed from 0 to +2 (1) and H has changed from +1 to 0 (1)	2	
	(ii)	Calcium reacts with water producing hydrogen/ H_2 /calcium/hydroxide/ $Ca(OH)_2$ (1) (i.e. one product) $Ca(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$ (1) (i.e. full equation)		
		Equation would subsume both two marks	2	[4]
4.	(a)	(i) $12 \times 50/1000 = 0.600 \text{ mol } \checkmark$	1	
		(ii) 4 mol HC $l \rightarrow 1$ mol C l_2 / moles C l_2 = 0.15 mol \checkmark vol of C l_2 = 0.15 × 24 = 3.60 dm ³ \checkmark 2nd mark is consequential on molar ratio given	2	
	(b)	Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO ₂ : ox no of Mn = +4 or MnC l_2 : ox no of Mn = +2 \checkmark The other oxidation number of Mn is correct,		
		ie in MnO_2 : ox no of $Mn = +4$		
		or in MnC l_2 : ox no of Mn = +2 \checkmark	2	[5]

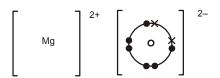
5. loss (of electrons) ✓ (i)

1

2

(ii) Ba ✔ $0 \rightarrow (+)2 \checkmark (accept 2+)$

[3]


Oxidation state goes from 0 in O_2 **6.** \rightarrow -2 in MgO \checkmark

2

2

1

(ii)

or with Mg full shell.

correct dot and cross√; correct charges√

- [4]
- Amount of substance that has the same number of 7. (i) (a) particles as there are atoms in 12 g of ¹²C/ 6 × 10²³/ Avogadro's Number✓
 - $moles = \frac{0.275 \times 120}{1000} = 0.0330 \text{ mol}\checkmark$ (ii) moles $Cl_2 = \frac{0.0330}{2} = 0.0165 \text{ mol}$ 1
 - volume $Cl_2 = 0.0165 \times 24000 = 396 \text{ cm}^3 \checkmark / 0.396 \text{ dm}^3$ (iii) 792 cm³ worth 1 mark (no molar ratio) 1584 cm³ worth 1 mark (x 2) units needed.
 - 2 (iv) bleach / disinfectant /sterilising /killing germs✓ 1
 - NaClO₃✓ (b) 1
- [6]
-Ca(s) +2 \checkmark HCl(aq)CaCl2(aq) + .H₂(g). \checkmark 8. 2 (g) not required for H₂

- (b) In Ca, oxidation state = 0 ✓ and In CaCl₂, oxidation state = +2 ✓
 Oxidation number increases from Ca to CaCl₂
- [4]

[3]

2

- **9.** (a) RaCl₂ ✓
 - (b) Reduction is gain of electrons/decrease in oxidation number
 - Ra²⁺ gains 2 electrons \rightarrow Ra/ Oxidation state goes from +2 in RaC $l_2 \rightarrow 0$ in Ra \checkmark 2