

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **195 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

Percentage

%

www.exampaperspractice.co.uk

Score

/163

	• • •					
Q	uesti	on	Answer	Mar	ks	
1	(a)		E°redox systemMost negativeE			ALL 3 correct for 1 mark
			С			
			Least D negative ✓	1		
	(b)	(i)	pH = 0 ✓	1	G	uidance
	(b)	(ii)	H redox system is more negative (e.g. has a more –ve <i>E</i> OR less +ve <i>E</i> OR is –ve OR H redox system releases electrons (May be in equation, e.g. H ₂ → 2H ⁺ + 2e ⁻) ✓	electrode)		ALLOW ORA, <i>ie</i> Ag redox system (D) has more positive <i>E</i> / less negative <i>E</i> ALLOW equilibrium sign
			Equilibrium shifts to increase [H ⁺] OR H ⁺ OR standard hydrogen equation shifts to increase [H⁺] OR H⁺ ✓ 2		IGNORE H is more reactive ORA IGNORE direction of equilibrium shift
	(b)	(iii)	H_2 + $2Ag^+ \rightarrow 2Ag$ + $2H^+ \checkmark$	1		ALLOW multiples e.g. $\frac{1}{2}H_2 + Ag^+ \rightarrow Ag + H^+$ State symbols NOT required ALLOW equilibrium sign
	(c)	(i)	$\begin{array}{ccc} - & H_2O & \rightleftharpoons & HCN & OH^-\\ \textbf{AND } Base_2^2 & Acid 1 & Acid 2_4 & Base\\ CN \end{array}$	1√ 1		State symbols NOT required ALLOW CNH and HO ⁻ (i.e. any order) ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are.

Ques	tion	Answer	Marks	Guidance
(0) (ii)	H ⁺ reacts with CN [−] OR HCN forms OR equation: H ⁺ + CN [−] → HCN (ALLOW $=$) OR CN [−] accepts a proton/H ⁺ OR equilibrium shifts right AND CN [−] is removed \checkmark	1	ALLOW Acid reacts with/removes OH ⁻ ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
(0) (i)	Fuel reacts with oxygen/oxidant to give electrical energy / voltage✓	1	ALLOW named fuel. e.g. hydrogen/H ₂ ; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
(0) (ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance ✓	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H ₂ is a gas IGNORE 'produces no CO ₂ ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
(0) (iii)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW C ₂ H ₆ O for formula of ethanol IGNORE state symbols
(0) (iv)	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O_2 + 2H^+ + 2e^- \rightarrow H_2O$ ALLOW e (<i>ie</i> no $4/2$ sign) ALLOW $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ OR $3O_2 + 6H_2O + 12e^- \rightarrow 12OH^-$ IGNORE state symbols

Q	Question			Answer	Marks	Guidance
	(d)	(v)	oxidation: C from –2 to +4	'+' sign not required ✓		ALLOW 2– and 4+ ALLOW $C^{2-} \rightarrow C^{4+}$
			reduction: O from 0 to –2	\checkmark	2	ALLOW 0 and 2– ALLOW $O^0 \rightarrow O^{2-}$
						ALLOW 1 mark if correct oxidation numbers shown for BOTH C and O but wrong way around (<i>ie</i> C on reduction line and O on oxidation line)
						IGNORE O ₂ reduced IGNORE any reference to electron transfer (<i>not in question</i>)
				Tota	13	

Q	Question		Answer		Guidance	
2	(a)		Equations can be in either order		ALLOW multiples throughout IGNORE state symbols	
			$Na_2O + H_2O \rightarrow 2NaOH \checkmark$		ALLOW Na ₂ O + H ₂ O \rightarrow 2Na ⁺ + 2OH ⁻	
					DO NOT ALLOW equations with uncancelled species. e.g. Na ₂ O + $2H_2O \rightarrow 2NaOH + H_2O$	
			NaFeO _{2 +} 2H ₂ O \rightarrow Fe(OH) _{3 +} NaOH \checkmark	2	ALLOW 2NaFeO ₂ + H ₂ O \rightarrow Fe ² O ₃ + 2NaOH OR 2 + H ₂ O \rightarrow Fe ² O ₃ + 2Na ⁺ + 2OH ⁻ \checkmark	
	2NaFeO					

Question	Answer	Marks	Guidance
(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 33.7%, award 6 marks. IF there is an alternative answer, check to see if there is any ECF credit possible using working below amount $S_2O_3^{2-}$ used = 0.1000 × $\frac{25.50}{1000}$		FULL ANNOTATIONS MUST BE USED IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49
	$= 2.550 \times 10^{-3} \text{ (mol) } \checkmark$ amount l ₂ = 2.550 × 10 ⁻³ ÷ 2 1.275 × 10 ⁻³ (mol) ×		ECF answer above ÷ 2
	amount $\operatorname{CrO_4^{2-}}$ $\overline{2}/3 \times 1.275 \times 10^{-3} \text{ OR } 1.275 \times 10^{-3} \div 1.5$ $= 8.5(00) \times 10^{-4} (\text{mol}) \cdot ($		ECF answer above ÷ 1.5
	amount $\text{CrO}_4^{2^-}$ in original 1000 cm ³ = 40 × 8.5(00) × 10 ⁻⁴		ECF answer above × 40
	= $3.4(00) \times 10^{-2} \text{ mol } \checkmark$ Mass of Cr/Cr ³⁺ in ore = $52.0 \times 3.4(00) \times 10^{-2} \text{ g}$	6	ECF answer above × 52.0 IMPORTANT: The last two marks are ONLY available by using 52.0 for Cr
	1.768 g ✓ percentage Cr in ore = $\frac{1.768}{5.25} \times 100$ = 33.7% ✓ MUST be to one decimal place (in the question)		Common ECFs: 0.8% x 40 missing5 marks (scaling error)0.84%x 40 missing4 marks (scaling error and 2 DP)33.68%5 marks (2 DP)16.8%5 marks (divide Cr somewhere by 2)
			144.9%; 72.5% 4 marks (Final 2 marks unavailable) Use of $M(Fe(CrO_2)_2) = 223.8$ instead of $M(Cr)$.

Question	Answer	Marks	Guidance	
(c)	Overall: $_{4}^{2^{-}}$ + 3l ⁻ + 4H ₂ O → Cr ³⁺ + 1½ l ₂ + 8OH ⁻ ✓ CrO		ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout e.g. $2CrO_4^{2^-}$ + $6l^-$ + $8H_2O \rightarrow 2Cr^{3^+}$ + $3l_2$ + $16OH^-$ ALLOW equation using H ⁺ . i.e. $CrO_4^{2^-}$ + $3l^-$ + $8H^+ \rightarrow Cr^{3^+}$ + $1\frac{1}{2}l_2$ + $4H_2O$ OR $2CrO_4^{2^-}$ + $6l^-$ + $16H^+ \rightarrow 2Cr^{3^+}$ + $3l_2$ 8H ₂ O +	
	Half equations: $\begin{array}{c} 4^{2^{-}} + 4H_{2}O + 3e^{-} \rightarrow Cr^{3^{+}} + 8OH^{-} \checkmark \\ CrO \\ 2I^{-} \rightarrow I^{2} + 2e^{-} \checkmark \end{array}$	3	ALLOW $\operatorname{CrO}_4^{2^-}$ half equation using H ⁺ . i.e. $_4^{2^-}$ + 8H ⁺ + 3e ⁻ \rightarrow Cr ³⁺ + 4H ₂ O CrO	
	Total	11		

(Question		Answer	Marks	Guidance
3	(a)		 Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 100 kPa OR 10⁵ Pa OR 1 bar ✓ 	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
	(b)	(i)	$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq) \checkmark$	1	State symbols not required ALLOW ⇒ provided that reactants on LHS
	(b)	(ii)	Assume Cu ²⁺ Cu OR Cu half cell unless otherwise stated. [Cu ²⁺] decreases OR < 1 mol dm ⁻³ AND Equilibrium (shown in table) shifts to left ✓		<i>FULL ANNOTATIONS MUST BE USED</i>
			more electrons are released by Cu \checkmark		ALLOW <i>E</i> (for $Cu^{2+} Cu$) is less positive / more negative /decreases IGNORE standard electrode potential (<i>Cell no longer standard</i>) IGNORE E^{+} decreases CARE DO NOT ALLOW statements about silver <i>E</i> changing (CON)
			The cell has a bigger difference in $E \checkmark$	3	IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

(c)	(i)	no/less CO₂ OR H₂O is only product OR greater efficiency ✓	1	IGNORE less pollution IGNORE less carbon emissions IGNORE less fossil fuels used IGNORE no/less greenhouse gas OR no global warming (H ₂ O vapour is a greenhouse gas)
(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised ✓	1	IGNORE adsorption or absorption IGNORE low temperature DO NOT ALLOW liquidise processes are described in the question
(d)	(i)	E = −2.31 (V) ✓	1	– sign AND 2.31 required for the mark
(d)	(ii)	$4Al(s) + 4OH^{-}(aq) + 3O_2(g) + 6H_2O(I) → 4Al(OH)_4^{-}(aq)$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples ALLOW 1 mark for an equation in which OH ⁻ are balanced but have not been cancelled, e.g. $4Al(s) + 16OH^{-}(aq) + 3O_2(g) + 6H_2O(I) \rightarrow$ $4Al(OH)_4^{-}(aq) + 12OH^{-}(aq)$ ALLOW 1 mark if charge on Al(OH)_4 is omitted, i.e $4Al(s) + 4OH^{-}(aq) + 3O_2(g) + 6H_2O(I) \rightarrow 4Al(OH)_4(aq)$ ALLOW 1 mark for an 'correct equation' reversed, i.e. $4Al(OH)_4^{-}(aq) \rightarrow 4Al(s) + 4OH^{-}(aq) + 3O_2(g) + 6H_2O(I)$
		Total	11	

(Quest	ion	Answer	Marks	Guidance
4	(a)		Fe_2O_3 + 3Cl ₂ + 10OH ⁻ → 2FeO ₄ ²⁻ + 6Cl ⁻ + 5H ₂ O \checkmark \checkmark First mark for all 6 species Second mark for balancing	2	$\begin{array}{l} \textbf{ALLOW} \mbox{ multiples} \\ \textbf{ALLOW} \mbox{ oxidation half equation for two marks} \\ Fe_2O_3 + 10OH^- \rightarrow 2FeO_4^{2^-} + 5H_2O + 6e^- \\ Correct species would obtain 1 mark \\ - question: equation for oxidation \\ \textbf{ALLOW variants forming H}^+ \mbox{ for 1 mark, e.g:} \\ Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 6Cl^- + 5H^+ \\ Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 5HCl + Cl^- \\ \end{array}$
	(b)		$Ba^{2+}(aq) + FeO_4^{2-}(aq) \rightarrow BaFeO_4(s) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or –2 for ionic charges
	(c)		Reason can ONLY be correct from correct reducing agent		Ť
			reducing agent. I⁻ OR KI ✓		IGNORE H ⁺ OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine
			I [−] adds/donates/loses electrons		ALLOW I^- loses electrons AND to form I_2
			to FeO_4^{2-} OR to BaFeO_4 OR to $\text{Fe}(\text{VI})$ or to $\text{Fe}(+6) \checkmark$ ALLOW Fe(6+) OR Fe ⁶⁺	2	ALLOW Fe(6+) OR Fe ⁶⁺

(d)		FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 51.8%, award 4 marks.	For alternative answers, look first at common ECFs below. Then check for ECF credit possible using working below IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step
	$n(S_2O_3^{2-})$ used = $0.1000 \times \frac{26.4}{1000}$ = 2.64×10^{-3} (mol) \checkmark	Working must be to at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.880 allow 0.88
	$n(\text{FeO}_4^{2-}) = \frac{1}{2} \times \frac{2}{3} \times \frac{2.64}{10^{-3}} = 8.8(0) \times 10^{-4} \text{ (mol)} \checkmark$	ECF answer above $\times \frac{1}{2} \times \frac{2}{3}$ This mark may be seen in 2 steps via I_2 but the mark is for both steps combined
	Mass BaFeO ₄ in sample = $8.8 \times 10^{-4} \times 257.1$ g = 0.226248 g \checkmark	ECF 257.1 × answer above
	% purity = $\frac{0.226248}{0.437} \times 100 = 51.8\% \checkmark$ MUST be to one decimal place (in the question)	ECF answer above 0.437 ×100 ALLOW 51.7% FROM 0.226 g BaFeO ₄ (earlier rounding)
	As an alternative for the final two marks, ALLOW : Theoretical amount of BaFeO ₄ = $\frac{0.437}{257.1}$ = 0.00170 (mol) \checkmark % purity = $\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100$ = 51.8% \checkmark	4 Common ECFs: No × 2/3 for $n(\text{FeO}_4^{2^-})$: % purity = 77.7%/77.6% 3 marks No ÷ 2 for $n(\text{FeO}_4^{2^-})$: % purity = 25.9% 3 marks 24.6 used instead of 26.4: % purity = 48.2% 3 marks

(e)	gas: O₂ ✓		DO NOT ALLOW names IGNORE a balancing number shown before a formula
	precipitate: Fe(OH)₃ ✓		ALLOW Fe(OH) ₃ (H ₂ O) ₃
	equation: $2\text{FeO}_4^{2-} + 5\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 + 4\text{OH}^-$ OR $2\text{FeO}_4^{2-} + \text{H}_2\text{O} + 4\text{H}^+ \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 \checkmark$	3	ALLOW multiples ALLOW $2FeO_4^{2-}$ + $11H_2O \rightarrow 1\frac{1}{2}O_2$ + $2Fe(OH)_3(H_2O)_3$ + $4OH^-$
	Total	12	