

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 64 Minutes

Score

/53

Percentage

%

CHEMISTRY

Edexcel AS & A LEVEL

Mark Scheme

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

Question Number	Acceptable Answers		Reject	Mark
1 (a)	$V^{2+}(aq) + 2e^- \rightleftharpoons V(s)$	-1.18 (V)		(1)
	$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	-0.26 (V)		
	Both correct			

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	A (salt bridge containing saturated solution of) potassium nitrate / KNO ₃ ALLOW potassium chloride / KCI / sodium chloride / NaCI /sodium nitrate / NaNO ₃ (1) B (electrode) platinum /Pt (1) C (solution containing) vanadium(II) and vanadium(III) ions / V ²⁺ and V ³⁺ ions ALLOW compounds of V ²⁺ and V ³⁺ (1) IGNORE any concentrations	KI / Nal vanadium	(3)

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	298 K / 25°C (temperature)	298°K / 273 K / 0°C / room temperature	(2)
	1 atm / 100 kPa /101 kPa / 1 bar (pressure) ALLOW atmospheric pressure IGNORE hydrogen / gas	wrong pressure units eg 100 Pa	
	1 mol dm ⁻³ (all concentrations) ALLOW this if written in (b)(i)	wrong concentration units eg 1 mol	
	ALLOW '1 molar' / 1M / equal concentrations of V ²⁺ and V ³⁺ / vanadium(II) and vanadium(III) ions		
	All 3 correct (2) Any 2 correct (1)		

Question Number	Acceptable Answers		Reject	Mark
1 (c)	First mark – stand alone vanadium(IV) / V(IV) / (+)4 (oxidation sta	te)		(5)
	ALLOW V ⁴⁺	(1)		
	IGNORE VO ²⁺			
	Second mark E_{cell}^{θ} (= 1.00 - 0.54) = (+)0.46 (V)	(1)		
	Third mark $2VO_2^+ + 4H^+ + 2I^- \rightarrow 2VO^{2+} + 2H_2O + I_2$		Mention of iodide ions	
	ALLOW multiples / ⇌	(1)	reduced	
	IGNORE any working before this equation			
	Fourth mark For the reduction of V (IV) to V (III) E^{θ}_{cell} (= 0.34 - 0.54) = -0.2(0) (V)		Incorrect value	
	OR E ^e _{cell} for the reaction between VO ²⁺ and I ⁻ i negative (so V(IV) is not reduced to V(III))			
	OR I_2/I^- electrode potential / SEP / E $^{\circ}$ value is positive than the VO $^{2+}/V^{3+}$ value (so V(IV) reduced to V(III))			
	OR VO^{2+}/V^{3+} electrode potential / SEP / E $^{\circ}$ valuless positive than the I_2/I^- value (so V(IV) reduced to V(III)) (1)	is not		
	IGNORE equation for VO ²⁺ and I ⁻			
	Fifth mark – stand alone E ^e _{cell} is positive / greater than 0 so (first) re is feasible and E ^e _{cell} is negative / less than 0 so (second) re is not feasible			
	ALLOW spontaneous for feasible IGNORE incorrect values provided the sign correct	(1) s are		

EXAM PAPERS PRACTICE				
Question Number	Acceptable Answers	Reject	Mark	
2 (a)(i)	Solt photograph of electrode in solution		3	
	containing V ²⁺ (aq) AND beaker containing V ²⁺ (aq) and V ³⁺ (aq) with Pt electrode			
	N.B. Both solution levels must be shown (1)			
	Labelled salt bridge AND connections to voltmeter ALLOW Suitable name or formula of salt for label	Salt bridge neither dipping into nor touching solution unless penalised in MP1		
	ALLOW Salts eg NaCl in salt bridge (1)	Salt bridge containing an alkali/acid		
	Ion concentrations = 1 mol dm ⁻³ ALLOW M for mol dm ⁻³ Concentrations given in one beaker only	1 mole of V ²⁺ and 1 mole of V ³⁺		
	(1)			
	Beaker positions may be reversed			
	Ignore references to temperature and pressure			

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)i)	st mark 2V ³⁺ + V → 3V ²⁺ Balanced equation, either direction ALLOW Eqm sign for → IGNORE State symbol even if incorrect (1) Second mark Correct direction ALLOW If balancing is incorrect or e ⁻ included in equation (1)	e ⁻ included	2

Question Number	Acceptable Answers		Reject	Mark
2b (i)	([VO ²⁺ (aq) + 2H ⁺ (aq)], [V ³⁺ (aq) + H ₂ O(I)] Pt) ([VO ₂ ⁺ (aq) + 2H ⁺ (aq)], [VO ²⁺ (aq) + H ₂ O(I)] Pt) Sign and value needed	+0.34		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	A: (+)0.32 (V) (1)		6
	VO ²⁺ (may be shown as a product in an overall equation) (1)		
	EITHER Bubbles / effervescence (of colourless gas) OR Colour changes (from yellow) to blue		
	TE on negative E_{cell} for 'stays yellow' ALLOW (from yellow) to green if justified by partial reduction (1)	Violet	
	B: -0.2(0) (V) (1) no change / stays blue (1) If B=+0.2 or other positive value allow colour change from blue to green or brown.	Stays violet	
	EITHER Consistent use of rule that reaction occurs when E_{cell} is positive OR Consistent use of rule that no reaction occurs when E_{cell} negative ALLOW		
	If implied but not stated specifically (1)		

Question Number	Acceptable Answers	Reject	Mark
2c (i)	$V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 3e^-$ OR Ox number of V increases by 3, ox number of Mn decreases by 5 ALLOW Balanced full equation $5V^{2+} + 3MnO_4^- + 4H^+ \rightarrow$ $5VO_2^+ + 3Mn^{2+} + 2H_2O$	Reverse equation unless used to deduce final correct equation.	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	$(35.50 \times 0.0200/1000) = 7.1(0) \times 10^{-4} / 0.00071$		1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)i)	final answer 92.2 scores 3 marks 33.2 scores 2 marks (ratio inverted) 55.3 scores 2 marks (ratio 1:1)		3
	METHOD 1 Mol V ²⁺ reacting = 7.10x 10 ⁻⁴ x 5/3 = 1.18333 x 10 ⁻³ = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)	x 3/5 = 4.26x 10 ⁻⁴	
	Mass $NH_4VO_3 = (1.183 \times 10^{-3} \times 116.9)$ = 0.1382927 g TE from 4.26 x $10^{-3} = 0.497994$ (1)		
	% purity = (0.1382927x 100/ 0.150) = (92.19333) = 92.2% TE from 0.497994 = 33.2% (1)		
	METHOD 2		
	If 100% pure, moles of NH_4VO_3 =0.150/116.9=1.283 x 10 ⁻³ (1)		
	Mol V ²⁺ reacting = $7.10x \ 10^{-4} x \ 5/3$ = $1.18333 \ x \ 10^{-3}$ = mol VO ₂ ⁺ TE on answer to (c)(ii) (1)		
	% purity = = $1.18333 \times 10^{-3} \times 100/1.283 \times 10^{-3}$ = 92.2% (1)		
	ALLOW TE at each step provided that each number used is to at least 2sf		

Question Number	Acceptable Answers	Reject	Mark
3 (a)	Half-equation E^{\bullet}/V $+0.4(0)$ $+1.23$ (1) for each correct value Penalise omission of $+$ once only	+2.46	2

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	 1 atm / 100 kPa / 101 kPa /1 bar 	Wrong pressure units	2
	• 1 mol dm ⁻³ ([H ⁺] / [HCI]) ALLOW '1 molar' / '1M'	Incorrect concentration units (eg '1 mol' / 1 mol ⁻¹ dm ³ for [H ⁺])	
	• 298 K / 25 °C ALLOW "OK"	273 K / 0°C / 'room temperature'	
	All THREE conditions correct = 2 marks		
	Any TWO conditions correct = 1 mark		
	IGNORE References to 'standard conditions' References to Pt/catalyst		
	ALLOW 0.5 mol dm $^{-3}$ H ₂ SO ₄ INSTEAD of the 1 mol dm $^{-3}$ ([H $^+$] / [HCI])		

Question Number	Acceptable Answers	Reject	Mark
3 (c)	First mark: Mentions / some evidence for the use of BOTH equations 1 AND 3 from the table in any way, even if reversed or left unbalanced eg $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-$ (aq) AND $4OH^-(aq) + 2H_2(g) \rightarrow 4H_2O(I) + 4e^-$ (1) ALLOW \rightleftharpoons for \rightarrow Second mark: (Adds the above half-equations cancelling $4e^-$ to get)	Equations involving H ⁺	2
	$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ OR $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ (1) ALLOW \rightleftharpoons for \rightarrow but must have H_2 and O_2 on left Mark the second scoring point independently	If e ⁻ / OH ⁻ / H ⁺ / two surplus H ₂ O molecules remain in this final equation (O) for 2nd mark	
	Award this mark if the correct equation is seen, no matter how it is derived ALLOW MULTIPLES OF EQUATIONS IN ALL CASES IGNORE any state symbols, even if incorrect ALLOW equilibrium sign ≠ used in ANY of the above equations instead of the full arrows		

Question Number	Acceptable Answers	Reject	Mark
3 (d)	E ^e _{cell} = +0.40 — (-0.83) (V) = (+)1.23 (V) + sign NOT required in final answer Correct answer with or without working scores (1) No ECF from any incorrect E ^e values used	-1.23 (V)	1

Question Number	Acceptable Answers	Reject	Mark
3 (e)	Reaction / equation is the same OR Reaction / equation for both is $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ ALLOW \rightleftharpoons for \rightarrow IGNORE state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and	'Electrode potentials don't change' Just same product / water is produced Just same reactants are oxidized and reduced Same reaction but in reverse scores (0)	1
	oxygen' / 'reactants and products are the same' ALLOW multiples of the equation		

Question Number	Acceptable Answers	Reject	Mark
3 (f)	To increase the surface area /to increase the number of active sites		1

Question	Acceptable Answers	Reject	Mark
Number 3(g)	Storage (problems) OR hydrogen / oxygen / the gases have to be stored under pressure OR Leakage (of hydrogen / of oxygen /of gas) OR Transport(ation) problems OR Hard to carry / lack of portability OR Hydrogen flammable / inflammable OR Hydrogen explosive OR (Fuel cell) costly / expensive OR Needs (regular) re-filling OR Needs continual replenishment of H2 and O2 OR Lack of availability (of hydrogen / fuel) OR Hydrogen is made from fossil fuels / hydrogen is made from Natural Gas / hydrogen is made from non-renewable resources ALLOW water is a Greenhouse gas / Fuel cell(s) have short(er) life-span / Fuel cells have to be (regularly) replaced IGNORE references to just 'danger' or just 'safety' or just 'hazardous' Any arguments in terms of voltage output	'Fuel cell can only be used once' scores (O)	1
			1

Question Number	Acceptable Answers	Reject	Mark
4 (a)	$-285.8 / -286 \text{ (kJ mol}^{-1}\text{)}$		1

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(I) + 2e^{(-)}$ (1)		3
	$O_2(g) + 2H_2O(I) + 4e^{(-)} \rightarrow 4OH^-(aq)$ (1)		
	For state symbols mark: Two of the four stated equations (see the two equations above and the two equations below) must be quoted even if reversed or unbalanced. All state symbols must be correct in both equations for correct species for the state symbol mark (penalise once only) Both equations for an acid fuel cell score max 2 (1 for correct equations and 1 for states)		
	e.g. $H_2(g) \rightarrow 2H^+(aq) + 2e^{(-)}$ OR		
	$H_2(g) - 2e^{(-)} \rightarrow 2H^+(aq)$		
	$O_2(g) + 4H^+(aq) + 4e^{(-)} \rightarrow 2H_2O(I)$		
	ALLOW		
	Equation multiples		
	Equations in reverse direction		
	Any order of equations Reversible arrows		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	Electrolyte / to allow the movement of ions (between electrodes) ALLOW	Catalyst Just 'conducts	1
	Movement of hydrogen ions/ oxonium ions / hydroxonium ions / hydronium ions / H ⁺ /	electricity'	
	H ₃ O ⁺ / hydroxide ions / OH ⁻ (between electrodes)	Movement of other ions / charged species	
	IGNORE References to electron transfer		

Question Number	Acceptable Answers		Reject	Mark
4 (b)(iii)	Any two of			2
	Both involve breaking / weakening bonds			
	OR			
	Both involve active site(s) (on the catalyst surface)			
	OR			
	Adsorption ((2)	Absorption	
	IGNORE			
	Lowers the activation energy			
	Both heterogeneous References to surface area or "surface for the	0		
	reaction"	e		
	References to orientation of reactant molecul	les		
	"Reaction pathway is similar"			

Question Number	Acceptable Answers	Reject	Mark
4 (c)(i)	Water is the only product (at the point of use) / no oxide(s) of carbon IGNORE Reference to efficiency and/or high energy density Greener	Less oxide(s) of carbon	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)(ii)	Any two from: Fuel cell is more efficient / 70% efficient ALLOW Any % between 70% and 100% It produces electricity directly OR Less heat loss Releasing energy in a more controlled manner (2) IGNORE References to sefety	Any mention of carbon emissions	2
	References to safety		

Question Number	Acceptable Answers	Reject	Mark
4 (c)(iii)	Either High cost / expensive		1
	OR		
	Cost of catalyst		
	OR		
	Short life-span		
	IGNORE		
	References to liquefaction and / or storage of hydrogen / size / weight		

Question Number	Acceptable Answers	Reject	Mark
4 (c)(iv)	Any two from Ethanol renewable / sustainable / carbon neutral / availability of raw materials / low(er) carbon footprint / made from natural processes e.g. fermentation or biomass Less explosive / less flammable / safe(r) Easier to store / pressure not needed for storage / easier to transfer Fuel tank light(er) / small(er) New petrol stations not required ALLOW Reverse arguments for hydrogen IGNORE		2
	Reference to cost References to energy density		