

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 3: Periodic table and energy

www.exampaperspractice.co.uk

Q	uesti	ion	er	Marks	Guidance
1	(a)		Only one (desired) product formed ✓	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 94% award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			Moles of sulfur reacted or theoretical moles of $H_2SO_4 = 1.60 \times 10^6 \checkmark$		ALLOW 1.6 × 10 ⁶ to the calculator value 1.601246106 × 10 ⁶ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded
			Actual moles of $H_2SO_4 = 1.50 \times 10^6 \checkmark$		ALLOW 1.5 × 10 ⁶ to the calculator value 1.498470948 × 10 ⁶ correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of H ₂ SO ₄ = 157 (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks
			% yield = 94 ✓		ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(c)	(i)	Position of equilibrium – unchanged ✓	2	
			Rate of backward reaction – decreases ✓		

Question	er	Marks	Guidance
(c) (i	(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓	1	Both position of equilibrium AND explanation needed for one mark Note: ALLOW suitable alternatives for 'to left', e.g. towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW reaction gives out heat for exothermic ALLOW reaction takes in heat for endothermic ALLOW moves to the left in the endothermic direction ALLOW ORA if specified IGNORE responses in terms of rate
(i	(equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR (equilibrium position shifts) to the left because there are fewer moles (of gas) on product side ✓	1	Both position of equilibrium AND explanation needed for one mark Note: ALLOW suitable alternatives for 'to left', e.g.: towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW correct reference to volume of gases e.g. shifts to the left because there is a smaller volume of gas on the product side ALLOW ORA if specified IGNORE responses in terms of rate

	.OW correct structural OR displayed OR skeletal formula mixture of the above (as long as unambiguous)
OR H CH ₃ H H H C C C C C OH OR H CH ₃ H H H H H H IGNO	OW vertical 'bond' to any part of the OH group NOT ALLOW horizontal –HO in the formula OW as a slip one stick with no H on in a displayed
H CH3 H	

Question	er	Marks	Guidance
Question (d) (ii)	Correct structure for L CH2CH3 H3C H COrrect structure for M H3C CH2CH3 CH2CH3 CH2CH3 CH2CH3 H H H H H H H H H H H H	Marks 3	Guidance ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) for L, M and N e.g. N - CH ₂ CHCH ₂ CH ₂ CH ₃ Answers to L and M are interchangeable IGNORE cis/trans OR E/Z labels ALLOW as a slip one stick with no H on in a displayed formula
	'' н н н н		ALLOW 2 marks if three correct structures are drawn but some are in the wrong boxes ALLOW 1 mark if two correct structures are drawn but in the wrong boxes

Question		er	Marks	Guidance
(d)	(ii	H CH ₃ H H	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW as a slip one stick with no H on in a displayed
		Y		formula
		Total	13	

Q	Question		Answer	Mark	Guidance
2	(a)	(i)	$CI + O_3 \rightarrow CIO + O_2 \checkmark$		ALLOW any correct multiples
			$CIO + O \rightarrow CI + O_2 \checkmark$	2	ALLOW CIO + $O_3 \rightarrow 2O_2 + CI$
					IGNORE state symbols and dots
		(ii)	$O_3 + O \rightarrow 2O_2 \checkmark$	1	ALLOW any correct multiple
					ALLOW 2O ₃ → 3O ₂
					IGNORE state symbols and dots
	(b)				ANNOTATE WITH TICKS AND CROSSES
			Adsorption of reactants OR NO and CO attached to surface ✓		ALLOW CO and NO (weakly) bonded to surface OR reactants bond to surface OR CO and NO form temporary bonds with the catalyst DO NOT ALLOW absorption
			Bonds weaken in reactants ✓		ALLOW bonds weaken in NO OR bonds weaken in CO
			Chemical reaction OR rearrangement of electrons ✓		OR activation energy is lowered
				4	ALLOW bonds break and new bonds made in product OR N ₂ and CO ₂ made
			Desorption ✓		ALLOW products leave the surface OR N ₂ and CO ₂ no longer bonded to surface ALLOW deadsorption ALLOW deabsorption if absorption given at start of answer

Question	Answer	Mark	Guidance
Question (c)	one activation energy labelled on enthalpy profile diagram ✓ idea that activation energy is lowered ✓ catalyst has a different reaction pathway OR different reaction mechanism OR two curves drawn on profile ✓ QWC – correct diagram of reaction profile for endothermic or exothermic reaction with products and reactants at different heights – y axis labelled as energy or enthalpy ✓	Mark	ANNOTATE WITH TICKS AND CROSSES ALLOW double headed arrows on the activation energy label ALLOW vertical line with no arrows DO NOT ALLOW arrow just pointing downwards Be generous with respect to the position of the line and the maximum of the curve marks can be awarded via, reaction profile, in words or from Boltzmann IGNORE any enthalpy change label drawn

Question	Answer	Mark	Guidance
(c)	Drawing of Boltzmann distribution AND axes labelled (number of) molecules and energy ✓		Boltzmann distribution - must start at origin and must not end up at 0 on y-axis ie must not touch x-axis. DO NOT ALLOW Boltzmann mark if two distributions are drawn one for non-catalysed and one for catalysed ALLOW particles instead of molecules DO NOT ALLOW atoms instead of particles **Ea cat** **Ea cat** **Ea cat** **Ea cat** **Incledules** **Incledule
	More molecules with energy above activation energy with a		DO NOT ALLOW more molecules have sufficient
	catalyst OR More molecules that overcome the activation energy ✓		energy to react
	More effective collisions OR more successful collisions ✓	7	

Question	Answer	Mark	Guidance
(d)	ANY FOUR FROM Enable reactions to occur with less waste OR enable reactions to take place with higher atom economy OR fewer undesired products ✓ Enable reactions to happen with less toxic solvents/reactants OR enable reactions to produce less toxic waste/side products ✓ Reactions can happen at room temperature OR reactions can happen at atmospheric pressure OR reactions can happen at a lower pressure OR reactions can happen at a lower temperature ✓		ALLOW make less hazardous waste ALLOW corrosive, poisonous, harmful, hazardous as alternative to toxic DO NOT ALLOW does not harm the environment IGNORE dangerous
	Saves energy (costs) ✓		IGNORE less expensive IGNORE reduces activation energy
	Reduce carbon dioxide emissions OR reduces amount of fuel burnt OR reduces greenhouse gas emissions ✓		IGNORE less pollution
	Enable reactions to occur with more specificity OR enable reactions to produce correct stereoisomer ✓	4	
	Total	18	

(Questi	on	Expected Answers	Marks	Additional Guidance
3	(a)	(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols
		(ii)	More crowded particles OR more particles per (unit) volume ✓ more collisions per second	2	ALLOW particles are closer together DO NOT ALLOW 'area' instead of 'volume' IGNORE 'more concentrated particles' ALLOW collisions more often
			OR more frequent collisions ✓		OR increased rate of collision OR collisions are more likely OR there is a greater chance of collisions 'More collisions' is not sufficient
		(iii)	Any two from the following:	2	
			Reaction takes alternative route ✓ Activation energy is lowered ✓		ALLOW catalyst changes reaction mechanism
			More molecules have energy above activation energy OR more molecules have enough energy to react ✓		ALLOW an alternative approach using adsorption particles adsorbed onto surface ✓ so bonds weakened as a result of the adsorption ✓

Que	estion	Expected Answers	Marks	Additional Guidance
	(iv	Correct curve for higher temperature ✓	3	maximum of curve to right AND lower than maximum of original curve AND above dotted line at higher energy as shown in diagram below IGNORE minor point of inflexion of curve
		Activation energy does not change OR clearly labelled on diagram, e.g. E_a OR $E \checkmark$		Note that the diagram above would score all 3 marks
		More molecules have energy above activation energy OR more molecules have enough energy to react ✓		More successful collisions is not sufficient
	(b) (i)	34.0 × 100 267.4 ✓ 12.7% ✓	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without × 100 ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

C	Question		Expected Answers	Marks	Additional Guidance
		(ii)	Any three from the following:	3	
			Oxygen comes from air ✓		IGNORE hydrogen comes from the air
			No poisonous materials formed OR no poisonous materials involved ✓ No waste products formed OR atom economy is 100% ✓ Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst ✓		IGNORE harmful ALLOW higher atom economy
	(c)		Bond breaking absorbs energy AND bond making releases energy ✓ More energy released than absorbed ✓	2	ALLOW bond breaking is endothermic AND bond making is exothermic ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants
			Total	15	
			Total	13	

	Question		Expected Answers	Marks	Additional Guidance
4	(a)		Cracking ✓	1	ALLOW catalytic or thermal cracking ✓
	(b)	(i)	Acid ✓	1	ALLOW correct formula if no name given: e.g. H₃PO₄ OR H₂SO₄ OR H⁺ ✓ ALLOW correct name of acid even if an incorrect formula is used
		(ii)	The position of equilibrium will shift so as to minimise the effect of any change in conditions ✓	1	IGNORE heterogeneous OR homogeneous DO NOT ALLOW 'reaction shifts' The idea of a shift in equilibrium is essential
		(iii)	Low temperature AND high pressure ✓	3	One mark for conditions. This mark is independent of the reasons for conditions
			Low temperature because the (forward) reaction is exothermic ✓		One mark for reason for the chosen temperature
			High pressure because there are fewer moles (of gas) on the right hand side ✓		One mark for reason for the chosen pressure ALLOW fewer moles of products
		(iv)	(60 atmosphere pressure is a) high pressure may be too expensive OR may cause safety problems ✓ (300 °C is sufficiently high) to give a fast rate of reaction ✓ without shifting equilibrium to the left OR compromising equilibrium yield ✓	3	
	(c)		Propene ✓	1	ALLOW prop-1-ene ✓ DO NOT ALLOW prop-2-ene
	(d)	(i)	$-CH2CHCI$ + 2½O ₂ → 2CO ₂ + H ₂ O + HCI \checkmark	1	
		(ii)	Alkali OR base OR carbonate ✓	1	ALLOW correct formula of or named carbonate OR alkali OR base Correct name and wrong formula does not score

Question	Expected Answers	Marks	Additional Guidance
(e)	Any two marks from the following:	2	
	Develop photodegradable polymers ✓		
	Develop biodegradable polymers OR develop compostable polymers ✓		
	Develop techniques for cracking polymers OR develop use as a chemical feedstock ✓		
	Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as crude oil ✓		
	Designing processes with high atom economy OR reduce waste products during manufacture ✓		
	Develop ways of sorting AND recycling polymers ✓		
	Total	14	

(Question		Expected Answers	Marks	Additional Guidance
5	(a)		Fractional distillation ✓	2	DO NOT ALLOW just 'distillation'
			Because fractions have different boiling points ✓		For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points
	(b)	(i)	Decane ✓	1	DO NOT ALLOW deceane
		(ii)	Skeletal formula of branched C ₁₀ H ₂₂ ✓	1	Formula must be skeletal AND must not include any symbol, e.g. CH ₃ Any possible skeletal formulae e.g.

Q	Question		Expected Answers	Marks	Additional Guidance	
		(iii)	Decane has more surface contact OR branched chains have less surface contact ✓	2	Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact	
			Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓		ALLOW Decane has stronger van der Waals' forces OR branched chains have weaker van der Waals' forces More intermolecular forces is not sufficient	
		(iv)	Branched chains have more efficient combustion OR decane has less efficient combustion ✓	1	ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR less likely to produce pre-ignition or knocking OR increases octane rating ALLOW ORA for decane	

Question		uestion Expected Answers		Additional Guidance
				Better fuel is NOT sufficient Burns more cleanly is NOT sufficient
(c)	(i)	$C_{10}H_{22} + 15\frac{1}{2}O_2 \longrightarrow 10CO_2 + 11H_2O$ All four species correct \checkmark balancing of four correct species \checkmark	2	ALLOW any correct multiple IGNORE state symbols
	(ii)	$N_2 + O_2 \longrightarrow 2NO \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

(d)	(i)	Species with an unpaired electron ✓	1	ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron
	(ii)	catalyst ✓	1	
	(iii)	$O + O_2 \longrightarrow O_3$ OR O reacts with O_2 to make ozone OR the reaction is reversible \checkmark	2	ALLOW $O_2 + O \rightleftharpoons O_3$ OR $O_3 \rightleftharpoons O_2 + O \checkmark \checkmark$
		Rate of formation of ozone is the same as rate of		ALLOW is in equilibrium
		decomposition ✓		OR ⇌ in correct equation
				OR has steady state condition ✓
				IGNORE other equations involving ozone
	(iv)	absorbs (harmful) UV ✓	1	ALLOW 'keeps out UV' OR 'filters UV'
				ALLOW increased UV could cause skin cancer
				OR increased UV could cause cataracts
				OR increased UV could cause mutation of crops ✓
				IGNORE gamma
		Total	15	