

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 63 Minutes

2002

CHEMISTRY

Mark Scheme

AQA AS & A LEVEL

Percentage

%

3.1 Physical chemistry

www.exampaperspractice.co.uk

Score

/53

P = 100 000 Pa and T = 298 K Wrong conversion of V or incorrect conversion of P / T lose M1 + M3

$$n = \frac{PV}{RT} \text{ or } \frac{100\ 000 \times 4.31}{8.31 \times 298}$$

If not rearranged correctly then cannot score M2 and M3

n(total) = 174(.044)

1

1

1

n (NO) = <u>69.6</u>

	ent's M3 × 4 / 10 but must be to 3 significant figures Allow stud	1
(i)	3000 17 Allow answer to 2 significant figures or more	1
	176.5 Allow 176 – 177 But if answer = 0.176 – 0.18 (from 3 / 17) then allow 1 mark	1
(ii)	176.47 × 46 = 8117.62 M1 is for the answer to (b)(i) × 46. But lose this mark if 46 ÷ 2 at any stage However if 92 ÷ 2 allow M1	1
	$8117.62 \times \frac{80}{100} (= 6494 \text{ g})$ $M2 \text{ is for } M1 \times 80 / 100$ $\frac{6494}{1000} = 6.5$ $M2 \text{ is for the ensure to } M2 + 1000 \text{ to min } 2 \text{ similar to the set}$	1
	M3 is for the answer to M2 ÷ 1000 to min 2 significant figures (kg)	

OR

(b)

If 163 mol used: 163 × 46 = 7498 (1) $7498 \times \frac{80}{100} = 5998.4 g(1)$

6.00 kg (1)

(c)
$$0.543 \times \frac{2}{3} (=0.362)$$

if not $\times \frac{2}{3} CE = 0/2$

1

1

1

1

1

$$0.362 \times \frac{1000}{250} = 1.45 (\text{mol dm}^{-3})$$

Allow 1.447 - 1.5 (mol dm⁻³) for 2 marks

(d) NO₂ contributes to acid rain / is an acid gas / forms HNO₃ / NO₂ is toxic / photochemical smog

Ignore references to water, breathing problems and ozone layer. Not greenhouse gas

(e) Ensure the ammonia is used up / ensure complete reaction or combustion

OR

Maximise the yield of nitric acid or products

(f) Neutralisation

Allow acid vs alkali or acid base reaction

[14]

(a) P = 100 000 (Pa) and V = 5.00 x 10⁻³ (m³)
 M1 is for correctly converting P and V in any expression or list Allow 100 (kPa) and 5 (dm³) for M1.

 $n = \frac{PV}{RT} = \frac{100\ 000 \times 5.00 \times 10^{-3}}{8.31 \times 298}$

M2 is correct rearrangement of PV = nRT

= 0.202 moles (of gas produced) This would score M1 and M2.

Therefore $\frac{0.202}{5}$ = 0.0404 moles B₂O₃ M3 is for their answer divided by 5

Mass of $B_2O_3 = 0.0404 \times 69.6$ M4 is for their answer to M3 x 69.6

=<u>2.81</u> (g)

M5 is for their answer to 3 sig figures. 2.81 (g) gets 5 marks.

1

1

1

1

(b)	B + 1	$1.5 \text{ Cl}_2 \rightarrow \text{BCl}_3$ Accept multiples.	1
	<u>3</u> bo	onds	1
	Pair	rs repel <u>equally</u> / by the <u>same amount</u> Do not allow any lone pairs if a diagram is shown.	1
(c)	(i)	43.2/117.3 (= 0.368 moles BCl₃)	1
		0.368 x 3 (= 1.105 moles HCI) Allow their BCl₃ moles x 3	1

	Conc = <u>2.2</u>	$\frac{1.105 \times 1000}{500}$ HCI = $\frac{1.105 \times 1000}{500}$ Allow moles of HCI × 1000 / 500 $\frac{0 \text{ to } 2.22}{0 \text{ mol dm}^{-3}}$ Allow 2.2 Allow 2 significant figures or more	1
	(ii) H₃BO	H_3 + 3NaOH \rightarrow Na ₃ BO ₃ + 3H ₂ O Allow alternative balanced equations to form acid salts. Allow H ₃ BO ₃ + NaOH \rightarrow NaBO ₂ + 2H ₂ O	1
	10.8 (×10	0)	
(d)	120.3	Mark is for both <i>M</i> , values correctly as numerator and denominator.	1
	8.98(%)	Allow 9(%).	1
	Sell the HC		
(e)	Alternative	method	1
	CI = 86.8%	CI = 142 g	1

For more help please visit our website www.exampaperspractice.co.uk

B 13.2 10.8	CI 86.8 35.5	
	В 21.6 10.8	<i>CI</i> 142 35.5

1.22 2.45 or ratio 1:2 or BCl₂ 2:4 ratio

1

1

1

 $\begin{array}{l} \mathsf{BCl}_2 \text{ has } \textit{M}_r \text{ of } \texttt{81.8 so} \\ \texttt{81.8 x 2} = \texttt{163.6} \\ \texttt{Formula} = \texttt{B}_2\texttt{Cl}_4 \\ \qquad \qquad \texttt{B}_2\texttt{Cl}_4 \\ \qquad \qquad \texttt{Allow 4 marks for correct answer with working shown.} \\ \qquad \qquad \texttt{Do not allow } (\texttt{BCl}_2)_2 \end{array}$

[20]

Mol Pb = 8.14 / 207(.2) (= 0.0393 mol) *M1 and M2 are process marks*

Mol HNO₃ = 0.0393 × 8 / 3 = 0.105 mol Allow mark for M1 × 8/3 or M1 × 2.67

Vol HNO₃ = 0.105 / 2 = 0.0524 (dm³) Accept range 0.0520 to 0.0530 No consequential marking for M3 Answer to 3 sig figs required

(b) 101000 (Pa) and 638×10^{-6} (m³)

1

1

1

$$\begin{array}{ll} n = pV/RT & (= \underline{101000 \times 638 \times 10^{-s}}) & (& 8.31 \times 298 \\ &) & Can \ score \ M2 \ with \ incorrect \ conversion \ of \ p \ and \ V \\ If \ T \ incorrect \ lose \ M1 \ and \ M3 \\ \hline \underline{0.026(0) \ (mol)} \\ & If \ answer \ correct \ then \ award \ 3 \ marks \\ & Allow \ answers \ to \ 2 \ sig \ figs \ or \ more \\ & 26.02 = 1 \\ & If \ transcription \ error \ lose \ M3 \ only \\ \hline (i) \ 2Pb(NO_3)_2(s) \rightarrow 2 \ PbO(s) + 4NO_2(g) + (1)O_2(g) \\ & Allow \ multiples \\ & Allow \ fractions \end{array}$$

- (ii) Decomposition not complete / side reactions / by-products / some (NO₂) escapes / not all reacts / impure Pb(NO₃)₂
 Ignore reversible / not heated enough / slow
- (iii) Hard to separate O₂ from NO₂ / hard to separate the 2 gases Allow mixture of gases Not 'all products are gases'

(c)

[9]

1

1

1

1

1

1

1

1

(i)

2.16 ÷ 241.	8 = <u>0.00893</u> or 8.93 × 10⁻₃ (mol) Penalise if not 3 significant figures.
(ii)	n(O₂) = 0.00893 <u>× 0.75</u> (= 0.00670 mol) Allow part(i) <u>× 0.75</u> .
(iii)	M1 = T = 566 K and P = 100 000 Pa If M1 incorrect can only score M2 and M3.
	M2 = Moles NO ₂ = 0.0268 (mol) If M2 incorrect can only score M1 and M3. Allow moles of NO ₂ = student's answer to part (i) × 3. OR part (ii) × 4 and consequential M4.

Minimum of 2 significant figures.

M3 = V = p^{p} OR = $\frac{0.0268 \times 8.31 \times 566}{100\ 000}$

If M3 incorrect can only score M1 and M2.

	M4 = $0.00126 \text{ (m}^3) \text{ or } 1.26 \times 10^{-3} \text{ (m}^3)$ Allow minimum of 2 significant figures. Allow no units but incorrect units loses M4. If 0.00642 moles used: M2 = Moles NO ₂ = 0.0193 mol.	
	$M3 = V = \frac{p}{p} = \frac{0.0193 \times 8.31 \times 566}{100\ 000}$ M4 = 9.06 × 10 ⁻⁴ (m ³) allow 9.06 to 9.08 × 10 ⁻⁴ .	1
(b)	(Thermal) decomposition Do not allow catalytic decomposition.	1
(c)	Other products are gases / other products escape easily Allow no other solid (or liquid) product.	1 [8]
		[1]

[1]

5.B

6.B