

Question TICE number	Answer	Notes	Marks
1 (a) (i)	number of protons = 1; number of neutrons = 2;		2
(ii)	any three of the following comparisons: MP1. beta particle is negatively charged and alpha is positively charged;	ignore descriptions of applications of types of radiation	3
	 MP2. beta particle has lower/less mass ORA; MP3. beta particle has 1 charge but alpha has 2 charges; MP4. beta particle is an electron but alpha is 2p + 2n /eq; MP5. beta is less ionising; MP6. beta has higher speed; MP7. beta particles have larger range; 	allow 'beta is lighter' ORA	
	MP8. beta has higher penetrating ability;	allow beta can pass through paper but alpha will be stopped	
(iii)	 any sensible suggestion; e.g. alpha is 4 nucleons, tritium has (only) 3 / eq tritium has only 1p, 2p are in alpha tritium has not got enough mass / mass number too low tritium has not got enough nucleons tritium has not got enough p / atomic number too low tritium has not got enough p+n 	ignore tritium is too small	1
(b)	any two from: MP1. energy explanation; e.g. beta particles have given up all their KE on impact MP2. absorption explanation; e.g. beta particles have hit (and been absorbed by) phosphor MP3. penetration explanation; e.g. beta cannot penetrate (thick) glass / tube MP4. range explanation; e.g. signs are further away than the range of beta	ignore: • beta particles have low ionisation /OWTTE • no gas can escape	2

Question number	Answer	Notes	Marks
1 (c) (i)	time taken;	allow how long it takes reject 'half the time'	2
	and either of		
	 for (radio)activity to halve; for half of (radioactive) nuclei / atoms / isotope to decay; 	allow count rate for activity reject:	
(ii)	working seen/appropriate line(s) on graph seen; 13.5 years;	tolerance ± 0.5 years	2
(d)	MP1. correct judgment re claim;		2
	MP2. (because) EITHER correct statement re time (at which the activity is 400);	allow range of 21-22 years	
	OR		
	activity (at 20 years);	allow range of 410 to 440	
	e.g. the manufacturer is correct because the time would be 21.5 years (to reach an activity of 400)		
	OR		
	the manufacturer is correct because the activity is 420 (counts per minute) (at 20 years)		
		total marks = 14	

Question number	Answer	Notes	Marks
2 (a)	A - fission		1
(b)	A - absorbing some of the neutrons		1

Total 2 marks

EXAM PAPERS PRACTICE			
Question number	Answer	Notes	Marks
3 (a) (i)	A – electromagnetic waves		1
(ii)	for amount of (radioactive) isotope to halve; OR for (radio)activity to halve;	accept how long it takes do not accept 'half of the time' accept for 'amount' (number of un-decayed) nuclei / atoms / molecules / (un-decayed) mass of isotope	2
(b)	 Any two of - MP1. (a or β) would have insufficient range; MP2. (a or β) would be absorbed by patient/air; MP3. (a or β) are more ionising (than gamma rays); 	specific concepts and terminology are needed if the source is external max mark is ONE allow ORA penetration ORA stopped by skin / bone Allow (a or β) would be (more) likely to cause cancer/ damages cells (than gamma rays), ORA	2
(c) (i)	MP1. Idea that activity is due to nucleus decaying; MP2. (after some time) fewer radioactive nuclei /atoms left; MP3. Number (of nuclei) decaying per second decreases;	specific concepts and terminology are needed do not credit repeat of stem Reject for 1 mark. (it/nucleus) breaks down allow • nucleus is unstable • nucleus emits gamma • nucleus changes into new isotope fewer atoms of the same isotope left decay rate decreases	2

(ii)	one halving calculated; Idea of four half-lives / halvings; Evaluation; e. (420/2=) 210 for 1 mark	 4 repeated halving seen fraction remaining is 1/16 of activity Allow	3
	24 ÷ 6 = 4 (half-lives) 26 MBq (26.25)	 four divisions by 2 seen for 2nd mark remaining fraction = 1/16 = 0.0625 Correct answer without working scores full marks 	

Total 10 marks

Question Appears practice					
number	Ans	swer		Notes	Marks
4 (a) (i)					2
	safety precaution	needed	not needed		
	not touch the source with bare hands	(✓)			
	use tongs	✓			
	wear gloves		(√)		
	wear goggles		✓		
	students sit at least two metres away	✓			
	wear a lead apron		✓		
	store source in a lead box	✓			
	3 ticks correct in first colu	umn;		Ignore incorrect ticks in first column (award 1 mark as long as the three	
	2 ticks correct in second c	olumn;		correct boxes are ticked)	
(b) (i)	(because distance is a)	controlled va	riable;	allow idea of fair test/affecting results	1
				ignore comments relating to accuracy, reliability	
(ii)	MP1. idea of backgrou	ınd radiation;	;	allow 'sources of radiation all around	2
	MP2. any ONE sensible e.g. cosmic rays rocks/Earth/buil some foodstuffs radon	ldings		us' allow nuclear weapons testing/disasters	

	<u> </u>		
(iii)	MP1. lead; EXAM PAPERS PRACTICE		3
	MP2. idea of best absorber giving lowest count rate;	dependent on MP1	
	MP3. for Ba-133/can't evaluate using Sr-90 data;	dependent on MP1	
(iv)	any 3 of:	no mark for 'I agree with this conclusion /OWTTE'	3
	MP1. stone absorbs better than {plastic / wood / paper} for Sr-90/beta;	allow stone best absorber for Sr-90	
	MP2. stone worst absorber for Ba-133/gamma;		
	MP3. use of data to justify MP1 or MP2;	e.g. the count rate for plastic is about half that of stone for Ba-133	
	MP4. may not be worse absorber than paper as paper much thinner/not tested for Ba-133;		
(v)	MP1. beta;	allow 'beta and gamma'	3
	MP2. it's not alpha because {alpha would not reach the detector at this distance/ alpha would not go through paper};	allow 'it goes through paper'	
	MP3. it's not gamma <i>because</i> gamma is not stopped by metals;	allow 'it doesn't go through metals'	
		MP2 and MP3 dependent on MP1	
(vi)	reading would be too high/eq;		1
(5,22)	idea that count rate people to be constant	allow	1
(vii)	idea that count rate needs to be constant during the investigation/ORA;	allow either idea that would not need to replace the source often/ORA; or	1
		idea that shorter half- life has higher activity and therefore is more hazardous;	

Total 16 marks

Question number	Answer EXAM PAPERS PR	ACTICE Notes	Marks
5 a	(Atoms / nuclei with the) same number of protons; Different numbers of neutrons;	 ALLOW relevant correct alternatives e.g. atomic number, proton number nucleon number, atomic mass ignore comments about electrons 	1
b i	Electron;	ignore comments about properties of electrons e.g. speed ALLOW • e or e o	1
ii	any suitable detector e.g. Geiger(-Muller) tube/detector/counter; photographic film; zinc sulfide; gold leaf electroscope;	ALLOW • phonetic/incorrect spelling	1
iii	beta penetrates paper; beta absorbed/stopped by lead +/or aluminium;	 IGNORE all details of experimental setup beta goes through aluminium/eq DO NOT ALLOW bounced back for absorbed contradictions in answers e.g. re aluminium 	1

MP1. line goes through 0,1400 and (first half-life	ALLOW for MP2
plotted at) 15, 700;	an ecf from incorrect first half-life to 'correct'
MP2. line goes through/second half-life plotted at	second half-life e.g. 800400
30, 350;	and the state of t
MP3. a correctly curved line between 15 and 30	IGNORE
hours AND the line extends beyond 35 hours;	 a slight upcurve at 35 to 40 hours
	Bar charts
i.e.	
1600	
1400 —	Since this is a sketch then allow
1200 —	tolerance of +/- 1 square on the points
1000	
activity in Bq 800	
600	
400	
200 -	
0	
0 5 10 15 20 25 30 35 40	
time in hours	

	<u> </u>	<u> </u>	
Question number	Answer EXAM PAPERS	PRACTICE Notes	Marks
d i	any FOUR from: MP1. there is a known proportion / composition / activity when rocks formed; MP2. measure/determine the proportion of uranium or the activity now;	allow as a numerical example ignore work out the proportion when rocks were formed ALLOW Bq for activity radioactivity for activity amount for proportion IGNORE measure half-life of uranium they know its activity	1 1 1
	MP3. compare activity now to original activity/eq;MP4. (hence) determine the time / number of half-lives elapsed;MP5. (hence) calculate age from reference to half-life;	ALLOW colloquial expressions such as 'see how long it took to decay this much'	

ii	MP1. idea that it/half-life is too short OR idea that decay occurs too quickly/rapidly;	comparative of some sort needed for MP1 allow not enough time	1
	PLUS MP2. (hence) U / isotope would (all) have decayed (long ago) OR U activity would be too small (to distinguish from background / to measure);	care that you do not award both alternatives for MP2 IGNORE granite decays it decays	1

(Total for Question 5 = 15 marks)

For more help please visit our website www.exampaperspractice.co.uk