

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **73 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

Percentage

%

www.exampaperspractice.co.uk

Score

/61

Qu	esti	ion	Expected answers	Marks	Additional guidance
1	a		Co: (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁷ 4s ² ✓		ALLOW (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 4s ² 3d ⁷ (i.e. 4s before 3d) ALLOW upper case D, etc. and subscripts, e.g. [Ar]4S ₂ 3D ₇
			Co ³⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	If included, ALLOW 4s ⁰
	b		catalyst OR coloured ✓	1	IGNORE forms different oxidation states
	С		Donates an electron/lone pair to a metal ion \mathbf{OR} forms a coordinate bond to a metal ion \checkmark	1	ALLOW donates an electron pair/lone pair to a metal/transition element ALLOW dative (covalent) bond for coordinate bond
	d	i	Co(OH)₂ ✓		Mark independently $ALLOW Co(OH)_2(H_2O)_4$
			precipitation ✓	2	ALLOW precipitate (reaction)
		ii	CoCl₄ ^{2−} ✓		Mark independently
			ligand substitution ✓	2	ALLOW ligand exchange DO NOT ALLOW just substitution

Qu	Question		Expected answers	Marks	Additional guidance
	SEE APPENDIX 2			ENDIX 2	FOR EXAMPLES
	e	ii	143.4 OR 107.9 + 35.5 (g mol ⁻¹) used <i>i.e. molar mass AgCl</i> OR amount of AgCl = 0.02(000) mol \checkmark		DO NOT ALLOW AgCl ₂
			Ratio ratio complex : CI ⁻ = 1 : 2 OR 0.01 : 0.02 ✓		DO NOT ALLOW $\frac{2.868}{0.01}$ 0.01 linked to AgCl, not complex ALLOW this mark ONLY for evidence of Cl ⁻
			Identification – available from 1 : 2 ratio OR 2CI [–] Therefore the complex is $\mathbf{B} \checkmark$	3	Quality of Written Communication Identification as B is dependent on correct 1 : 2 ratio OR 2 CI ⁻ for this mark
	_		Total	15	

	Questior	Answer	Mark	Guidance
2	(a)	Fe: $(1s^22s^22p^6)3s^23p^63d^64s^2 \checkmark$ Fe ²⁺ : $(1s^22s^22p^6)3s^23p^63d^6 \checkmark$	2	ALLOW 4s before 3d, i.e. $(1s^22s^22p^6)3s^23p^64s^23d^6$ ALLOW 4s ⁰ ALLOW subscripts IGNORE $1s^22s^22p^6$ is written out a second time
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst ✓	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe ²⁺ can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe ²⁺)
	(c)	Fe oxidised from +2 to +3 ✓ Cr reduced from +6 to +3 ✓	2	 CHECK and credit oxidation numbers on equation ALLOW Fe²⁺ oxidised to Fe³⁺ ALLOW Cr⁶⁺ reduced to Cr³⁺ ALLOW + sign after number in oxidation number, <i>ie</i> 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, <i>ie</i> Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (<i>oxidation and reduction the wrong way around</i>) DO NOT ALLOW just 'Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons

Question	Answer	Mark	Guidance
2 (d)	$(\mathcal{K}_{stab} =) \frac{\left[[Fe(NH_3)_6]^{2+} \right]}{\left[[Fe(H_2O)_6]^{2+} \right] \left[NH_3 \right]^6}$ On top, ONLY $[Fe(NH_3)_6]^{2+}$ shown AND on bottom, $[Fe(H_2O)_6]^{2+}$ AND $[NH_3]^6$ shown \checkmark correct use of square brackets and double square brackets in expression \checkmark	2	IGNORE state symbols ALLOW 1 mark if complete expression with correct use of double brackets is shown but upside down DO NOT ALLOW round brackets for concentrations and complex ions ALLOW for 1 mark ($\mathcal{K}_{stab} = $) $\frac{\left[\left[Fe(NH_3)_6\right]^{2+}\right]\left[H_2O\right]^6}{\left[\left[Fe(H_2O)_6\right]^{2+}\right]\left[NH_3\right]^6}$
(e) (i)	O_2 /oxygen bonds to Fe ²⁺ /Fe(II)/Fe ✓ When required, O_2 substituted OR O_2 released ✓	2	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW O ₂ binds to Fe ²⁺ OR O ₂ donates electron pair to Fe ²⁺ ALLOW O ₂ bonds to metal ion/metal DO NOT ALLOW just O ₂ bonds to haemoglobin OR O ₂ bonds to complex ALLOW bond breaks between O ₂ and Fe ²⁺ when O ₂ required OR O ₂ replaces H ₂ O OR vice versa ALLOW O ₂ replaces CO ₂ OR vice versa ALLOW O ₂ replaces a ligand OR vice versa IGNORE just 'by ligand substitution' (in the question)

_	Ques		Answer	Mark	Guidance	
2	(e)	(ii)	(For complex) with CO, stability constant is greater (than with complex in O ₂) OR with CO, stability constant is high ✓ (Coordinate) bond with CO is stronger (than O ₂) OR bond with CO is strong ✓	2	 ANNOTATE WITH TICKS AND CROSSES, etc Comparison of CO and O₂ is NOT required ALLOW stability constant with/of CO is greater IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break OR bond with CO more likely to form OR 'CO cannot be removed' OR idea that attachment of CO is irreversible OR CO is a stronger ligand (than O₂) OR CO has greater affinity for ion/metal/haemoglobin (than O₂) IGNORE CO bonds more easily 	
	(f)	(i)	Pt ²⁺ /Pt is +2/2+, 2 x Cl ⁻ –2 ✓	1	DO NOT ALLOW response in terms of Cl ₂ rather than Cl ⁻ DO NOT ALLOW 'charges cancel' without the charges involved being stated	

	Ques	tion	Answer	Mark	Guidance
2	(f)	(ii)	H ₃ N, Pt Cl Cl Cl Cl Cl Cl Cl Cl NH ₃ Cl Pt NH ₃ Cl Pt Cl NH ₃ Cl NH ₃ C	3	 IGNORE any charge, ie Pt²⁺ OR Cl⁻, even if wrong IGNORE any angle, even if wrong ACCEPT bonds to H₃N (does not need to go to 'N') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl₂ as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE <i>cis</i> and <i>trans</i> labels (even if incorrect) IGNORE incorrect connectivity to NH₃, ie ALLOW NH₃—
		(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating ✓	1	

Question	Answer	Mark	Guidance
2 (g)	1,1-cyclobutanedicarboxylate ion		Must show cyclobutane ring with both COO ⁻ groups bonded to same carbon ALLOW COO ⁻ OR CO ₂ ⁻ for each carboxylate ion ALLOW structures showing CH ₂ or C atoms provided it is clear that C skeleton is shown, Note: H atoms are not required if C atoms shown, <i>ie</i> $O_{-} O_{-} O_$
	carboplatin (<i>cis</i> isomer shown below) $\downarrow \qquad \qquad$	2	Any bonds from ligand MUST come from O OR from atom with lone pair IGNORE any charge shown Note : H atoms are not required if C atoms shown, (see ion in 1st structure) ALLOW ECF from 1st structure provided that the attached atoms are capable of forming coordinate bonds (<i>ie</i> they contain a lone pair of electrons) Example if 1st structure is as below, then ALLOW 1 mark ECF $\bigvee_{O^-} \bigvee_{O^+} \bigvee_{O^+} \bigvee_{NH_3} \bigvee_{ECF} \bigvee_{NH_3} \bigvee_{CF} \bigvee_{O^+} \bigvee_{NH_3} \bigvee_{ECF} \bigvee_{NH_3} \bigvee_{ECF} \bigvee_{NH_3} \bigvee_{CF} \bigvee_{NH_3} $

3 (a) (i	(i)	amount S ₂ O ₃ ²⁻ used = 0.00100 × $\frac{24.6}{1000}$ = 2.46 × 10 ⁻⁵ mol \checkmark amount O ₂ in 25 cm ³ sample = $\frac{2.46 \times 10^{-5}}{4}$ = 6.15 × 10 ⁻⁶ mol \checkmark Concentration of O ₂ in sample = 6.15 × 10 ⁻⁶ × $\frac{1000}{25}$ = 2.46 × 10 ⁻⁴ (mol dm ⁻³) \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) ECF = $\frac{\text{answer above}}{4}$ ALLOW 0.00000615 g ECF answer above × $\frac{1000}{25}$ ALLOW 0.000246 g
		mass concentration of O_2 in mg dm ⁻³ = 2.46 × 10 ⁻⁴ × 32 g = 7.872 × 10 ⁻³ (g dm ⁻³) = 7.872 (mg dm ⁻³) \checkmark	4	ECF = answer above $\times 32 \times 1000$ ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in mg for mark Note: Candidate may work out steps 3 and 4 in the opposite order, <i>ie</i> mass of O ₂ in sample = 6.15 $\times 10^{-6} \times 32 \times 1000 = 1.968 \times 10^{-1}$ mg mass concentration of O ₂ in mg dm ⁻³ = 1.968 $\times 10^{-1} \times \frac{1000}{25} = 7.872$ (mg dm ⁻³)
(i	(ii)	Comment 7.872 > 5 so fish can survive \checkmark	1	ECF If final answer > 5 fish can survive If final answer < 5 fish cannot survive
(b) (i		NO ✓	1	ALLOW N ₂ H ₂

Question	er	Mark	Guidance
(b) (ii)	$2H_2O + 2^- + 2NO_2^- \longrightarrow 2NO + I_2 + 4OH^-$ OR 2H ⁺ + - + 2NO_2^- $\longrightarrow 2NO + I_2 + 2OH^-$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra H ₂ O or e ⁻ on either side of the equation ALLOW on LHS: 2HI + 2NO ₂ ⁻ OR 2I ⁻ + 2HNO ₂ ALLOW species and equation involving N ₂ H ₂ : $6H_2O + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 10OH^-$ OR $6H^+ + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 4OH^-$ species \checkmark balance \checkmark
	Total	8	

(Question	Answer	Marks	Guidance
4	(a)	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	2	ALLOW 'e': i.e. – sign not required
	(b)	Role of CO ₂ CO ₂ reacts with H ₂ O forming an acid OR carbonic acid/H ₂ CO ₃ forms OR CO ₂ is acidic ✓		ANNOTATIONS MUST BE USED ALLOW equation: $CO_2 + H_2O \longrightarrow H_2CO_3$ $OR CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$ $OR CO_2 + H_2O \longrightarrow 2H^+ + CO_3^{2-}$
		Equation involving OH ⁻ $H_2CO_3 + OH^- \longrightarrow H_2O + HCO_3^-$ OR $H_2CO_3 + 2OH^- \longrightarrow 2H_2O + CO_3^{2-}$ OR $CO_2 + OH^- \longrightarrow CO_3^{2-} + H^+$ OR $CO_2 + OH^- \longrightarrow HCO_3^-$ OR $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$ OR $H^+ + OH^- \longrightarrow H_2O \checkmark$		
		Effect on equilibrium with reason equilibrium shifts to right AND to restore OH ⁻ ✓	3	ALLOW for 'restores OH [−] ' the following: 'makes more OH [−] ', 'OH [−] has been used up' DO NOT ALLOW just 'equilibrium shifts to right'

Question	Answer	Marks	Guidance
(c)	FOLLOW through stages to mark Moles in titration $n(KMnO_4) = 0.0200 \text{ x} \frac{26.2}{1000} = 5.24 \text{ x} 10^{-4} \text{ mol } \checkmark$		ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step
	$n(\mathrm{SO}_3^{2^-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$		ECF 2.5 x answer above
	Scaling $n(SO_3^{2-})$ in original 100 cm ³ $= 4 \times 1.31 \times 10^{-3} = 5.24 \times 10^{-3}$ mol \checkmark		ECF 4 x answer above
	Mass Mass of Na₂SO₃ in sample = 126.1 x 5.24 x 10 ⁻³ g = 0.660764 g ✓		ECF 126.1 x answer above ALLOW 0.661 g up to calculator value
	Percentage % Na ₂ SO ₃ = $\frac{0.660764}{0.720} \times 100 = 91.8\%$ \checkmark	5	ECF $\frac{\text{calculated mass above}}{0.720} \times 100$ ALLOW 91.8% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92%
	ALLOW alternative approach based on theoretical content of Na ₂ SO ₃ for last 2 marks Theoretical amount, in moles, of Na ₂ SO ₃ in sample $n(Na_2SO_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol }\checkmark$ Percentage % Na ₂ SO ₃ = $\frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\% \checkmark$		COMMON ERRORS: $36.8(1)\%$ 4 marksno 2.5 factor $22.9(4)\%$ 4 marksno scaling by 4 9.18% 3 marksno 2.5 and no x 4Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$,e.g. use of $M(SO_3^{2-}) = 80.1$ giving 58.3%
	Total	10	

Qı	lest	ion	Expected answers	Marks	Additional guidance
5	а		$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O \checkmark$	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCl_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6CI^- + 3H_2O$ ALLOW correct multiplesIGNORE state symbolsDO NOT ALLOW Fe_2Cl_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow \\ 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Question	Expected answers	Marks	Additional guidance
C	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below
	Amount Fe ²⁺ in 250 cm ³ solution – 3 marks amount Cr ₂ O ₇ ²⁻ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30 × 10 ⁻⁴ (mol) \checkmark amount Fe ²⁺ = 6 × 5.30 × 10 ⁻⁴ = 3.18 × 10 ⁻³ mol \checkmark amount Fe ²⁺ in original 250 cm ³ = 10 × 3.18 × 10 ⁻³ = 3.18 × 10 ⁻² (mol) \checkmark		 Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe²⁺ ratio in equation from 8(b) BUT still ALLOW 6 : 1 even from different ratio in equation If no equation use actual 6 : 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1 : 1 ratio – makes problem easier ECF 10 × answer above
	% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		ECF 55.8 × answer above IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
	percentage Fe in ore = $\frac{1.77444}{3.25} \times 100$ = 54.6% \checkmark	5	ECF $\frac{\text{answer above}}{3.25} \times 100$ ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
			COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ \times 10 omitted 51.5 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 156.2 $\checkmark \checkmark \checkmark \checkmark$ \times 159.6 instead of 55.8 15.62 $\checkmark \checkmark \checkmark$ \times 159.6 and \times 10 omitted 45.5 $\checkmark \checkmark \checkmark \checkmark$ $5:1$ ratio 1.52 $\checkmark \checkmark \checkmark$ \div 6 instead of \times 6

Question	Expected answers	Marks	Additional guidance
d	E^{\bullet} for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E^{\bullet} for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark		ORA: E^{\bullet} for Cl ₂ is less positive/smaller than MnO ₄ ⁻ OR E^{\bullet} for Cl ₂ is more positive/greater than Cr ₂ O ₇ ²⁻
	MnO_4^- reacts with $CI^- OR HCI$ (forming CI_2 gas) OR $Cr_2O_7^{2-}$ does not react with CI^- ions \checkmark	2	
	Total	10	