

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

AQA AS & A LEVEL

Mark Scheme

3.2 Inorganic chemistry

www.exampaperspractice.co.uk

(a) White powder / solid / ash / smoke

Ignore ppt / fumes

1

Bright / white light / flame

Allow glows white / glows bright

1

 $Mg + H_2O \rightarrow MgO + H_2$

Ignore state symbols

Ignore reference to effervescence or gas produced

1

(b) Mg²⁺ / magnesium ion has higher charge than Na⁺

Allow Mg²⁺ ions smaller / greater charge density than Na⁺ ions

Allow Mg atoms smaller than Na (atoms)

Allow magnesium has more delocalised electrons

Must be a comparison

Ignore reference to nuclear charge

1

Attracts <u>delocalised / free / sea of</u> electrons more strongly / metal–metal bonding stronger / metallic bonding stronger

Wrong type of bonding (vdW, imf), mention of molecules CE = 0

1

(c)	Structure: Macromolecular / giant molecule / giant covalent Mark independently	1
	Bonding: Covalent / giant covalent	1
	Physical Properties:	
	Any two from: Hard/ Brittle / not malleable Insoluble Non conductor Ignore correct chemical properties Ignore strong, high boiling point, rigid	2
(d)	Formula: P ₄ O ₁₀ Mention of ionic or metallic, can score M1 only	1
	Structure: Molecular If macromolecular, can score M1 & M3 only	1
	Bonding: Covalent / shared electron pair	1
	van der Waals' / dipole–dipole forces <u>between molecules</u> Allow vdW, imf and dipole–dipole imf but do not allow imf alone	1

(f)
$$P_4O_{10} + 6MgO \rightarrow 2Mg_3(PO_4)_2$$

 $OR P_4O_{10} + 6MgO \rightarrow 6Mg^{2+} + {}_4PO_4^{3-}$
 $OR P_2O_5 + 3MgO \rightarrow Mg_3(PO_4)_2$ etc
 $Ignore\ state\ symbols$
 $Allow\ multiples$

[15]

1

	2	
V		

(a) MgO is ionic

	If not ionic, CE = 0	1
	Melt it If solution mentioned, cannot score M2 or M3	1
	(Molten oxide) conducts electricity Allow acts as an electrolyte. Cannot score M3 unless M2 is correct.	1
(b)	Macromolecular CE = 0 if ionic, metallic or molecular. Allow giant molecule.	1
	Covalent bonding Giant covalent scores M1 and M2	1
	Water cannot (supply enough energy to) break the covalent bonds / lattice Hydration enthalpy < bond enthalpy.	1
(c)	(Phosphorus pentoxide's melting point is) lower If M1 is incorrect, can only score M2	
	Molecular with covalent bonding M2 can be awarded if molecular mentioned in M3	1
	Weak / easily broken / not much energy to break intermolecular forces OR weak vdW / dipole-dipole forces of attraction between molecules	

Intermolecular / IMF means same as between molecules.

1

(d) Reagent (water or acid)

Can be awarded in the equation.

1

Equation eg MgO + 2HCl → MgCl₂ + H₂O

 $MgO + H_2O \rightarrow Mg(OH)_2$

Equations can be ionic but must show all of the reagent eg H⁺ +

CI-

Simplified ionic equation without full reagent can score M2 only.

Allow $6MgO + P_4O_{10} \rightarrow 2Mg_3(PO_4)_2$

1

(e) $P_4O_{10} + 12NaOH \rightarrow 4Na_3PO_4 + 6H_2O$

Allow P₂O₅ and acid salts.

Must be NaOH not just hydroxide ions.

[12]

(a) The number of protons increases (across the period) / nuclear charge increases

1

Therefore, the attraction between the nucleus and electrons increases

Can only score M2 if M1 is correct

1

(b) S₈ molecules are bigger than P₄ molecules

Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M₁

1

Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur

1

(c) Sodium oxide contains O2- ions

1

These O2- ions react with water forming OH- ions

$$O^2 + H_2O \longrightarrow 2OH$$
 scores M1 and M2

1

1

(d) $P_4O_{10} + 12OH^- \longrightarrow 4PO_4^{3-} + 6H_2O$

[7]

(a) (i) 1500

1

(ii) Ionic lattice / giant ionic

Mention of vdW / covalent bonding / molecules / atoms / metal etc. CE = 0

1

Strong attraction between oppositely charged ions / Na^+ and O^{2-} OR

lots of energy required to separate / overcome attraction between oppositely charged ions / Na^+ and O^{2^-}

Do not allow incorrect formulae for ions.

1

	(iii) 200	O (K)		
		Allow range 10−273 (K)		
		CE = 0 if temperature >573 K, otherwise mark on		
		Allow correct answers in °C but units must be given.		
			1	
	SC	O_2 smaller (molecule) (than P_4O_{10}) (or converse)		
		also SO ₂ has lower M _r / less surface area / less polarisable /		
		fewer electrons		
		penalise SO₃ and P₂O₅ for M2 only		
			1	
		W forces <u>between molecules</u> are weaker / require less energy to parate molecules		
		ignore dipole-dipole		
		If covalent bonds broken lose M2 and M3 but can gain M1		
			1	
(b)	SO ₂ + H	$_{2}O \rightarrow H_{2}SO_{3} / H^{+} + HSO_{3}^{-} / 2H^{+} + SO_{3}^{2-}$		
		can be equilibrium sign instead of arrow		
			1	
	1			
		Allow values between 1–3		
		mark independently		
			1	
(c)	Reacts v	with / neutralises bases / alkalis		
(0)	rtodoto v	Allow any given base or alkali including OH		
		Thiow any given bace of anali molating of	1	
	6:0 13	NaOU TNa SiO + U O		
	$SIO_2 + ZI$	NaOH DNa ₂ SiO ₃ + H ₂ O		
		Allow CaO + SiO ₂ \rightarrow CaSiO ₃ or equation with any suitable base		
		M2 can score M1 even if equation unbalanced or incorrect		
		ca coo.c cyaalon anaalanca of moonot	1	
				[10]

5

(a) Mg + $H_2O \rightarrow MgO + H_2$

ignore state symbols

1

White solid / powder / ash / smoke ignore precipitate ignore fumes

1

(Bright) white light / flame

allow glow

penalise effervescence under list principle

1

(b) $2\text{Na} + \frac{1}{2}\text{O}_2 \rightarrow \text{Na}_2\text{O} / 4\text{Na} + \text{O}_2 \rightarrow 2\text{Na}_2\text{O}$ Allow multiples, ignore state symbols $Allow \ 2\text{Na} + \text{O}_2 \rightarrow \text{Na}_2\text{O}_2$

1

white / yellow solid / ash / smoke
ignore precipitate
ignore fumes

1

1

orange / yellow flame

[6]