

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Maths

Mark Scheme

AQA AS & A LEVEL

Probability

www.exampaperspractice.co.uk

2(a)	P(X) = 0.3 $P(Y) = 0.4$ $P(Z) = 0.2$			
(i)	$P(X \cap Y \cap Z) = 0.3 \times 0.4 \times 0.2 = 0.024$	M1	1	
(ii)	$P(X' \cap Y' \cap Z') = 0.7 \times 0.6 \times 0.8$ = 0.336	M1 A1	2	At least 2 correct terms CAO
(iii)	$P(X' \cap Y' \cap Z) = 0.7 \times 0.6 \times 0.2$	M1		Correct numerical expression
	= 0.084	A1		CAO
(b)	$P(W \mid Z) = 0.9$ $P(W \mid Z') = 0.25$			
(i)	$P(Z \cap W) = 0.2 \times 0.9$ = 0.18	M1 A1	2	Correct numerical expression CAO
(ii)	$\begin{aligned} &P((Z \cap W') \cup (Z' \cap W)) \\ &\textbf{or} \\ &1 - [P((Z \cap W) \cup (Z' \cap W'))] \end{aligned}$			
	$= 0.2 \times (1 - 0.9)$	M1		0.2×0.9 or $(b)(i)$
	$(1-0.2) \times 0.25$	M1		$(1-0.2) \times (1-0.25)$
				Cannot score an M1 in both methods
	= 0.02 + 0.20 = 0.22	A1	3	1 – (0.18 + 0.60) CAO
	Total	10181		

6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	D(D) 24 32 41 23 120 SD(D') 40 37 88 35 200			
	T 64 69 129 58 320			
(a)(i)	$P(D) = \frac{120}{320}$ or $\frac{3}{8}$ or 0.375	В1	1	CAO; or equivalent
	320 6			
(ii)	$P(D \cap R) = \frac{24}{320}$ or $\frac{3}{40}$ or 0.075	B1	1	CSO; or equivalent
(iii)	$P(D \cup T) = \frac{120 + 88}{320} = \frac{129 + 24 + 32 + 23}{320}$	M1		
	$= \frac{208}{320} \text{ or } \frac{13}{20} \text{ or } 0.65$	A1	2	CAO; or equivalent
(iv)	$P(D \mid R) = \frac{P(D \cap R)}{P(R)} = \frac{\text{(ii)}}{P(R)} = \frac{\frac{24}{320}}{\frac{64}{320}}$	M1		M0 if independence assumed
	$=\frac{24}{64}$ or $\frac{3}{8}$ or 0.375	A1	2	CAO; or equivalent
	1	I	l	I
(v)	$P(R \mid D') = \frac{P(R \cap D')}{P(D')} = \frac{\binom{40}{320}}{\binom{200}{320}}$	M1		numerator allow independence assumed
	/(320)	M1		denominator
	$= \frac{40}{200} \text{ or } \frac{1}{5} \text{ or } 0.2$	A1	3	CAO; or equivalent
(b)(i)	R and S or R and T or S and T	B1	1	not D and D'
(ii)	$P(D) = 0.375 = P(D \mid R)$ or $(i) = (iv)$	M1		$P(D) \times P(R) = 0.375 \times 0.2$ = 0.075 = $P(D \cap R)$ or (ii)
	so YES	A1	2	or $P(R \mid D) = P(R) = 0.2$, etc
(c)(i)	A semi-detached house or two children (or both)	B1 B1	2	CAO or equivalent
(ii)	A detached house and/with	B1		CAO
	less than two children Total	B1	2 16	(0 or 1 must not include 'both')
	Total	I	10	

5(a)	$P(D' \cap E' \cap F') = 0.4 \times 0.3 \times 0.2$	M1		At least 1 probability correct
	= 0.024	A1	2	CAO; OE
(b)	$P(D' \cap E' \cap F) = 0.4 \times 0.3 \times 0.8$	M1		At least 2 probabilities correct
	= 0.096	A1	2	CAO; OE
(c)	$P(One) = (b) + P(D \cap E' \cap F') + P(D' \cap E \cap F')$ =(b) + (0.6 × 0.3 × 0.2) + (0.4 × 0.7 × 0.2)	M1 M1		Use of 3 possibilities; ignore multipliers At least 1 new term correct
	= 0.096 + 0.036 + 0.056 = 0.188	A1	3	CAO; OE
(d)	P(One or two) = (c) + (3 terms each of 3 probabilities) or = 1 - (a) - (1 term of 3 probabilities)	M1		(c) + P(Two) Used; OE; ignore multipliers 1 - (a) - P(Three)
	$= 0.188 + (0.6 \times 0.7 \times 0.2) + (0.6 \times 0.3 \times 0.8) + (0.4 \times 0.7 \times 0.8)$ $= 0.188 + 0.084 + 0.144 + 0.224$ or $= 1 - 0.024 - (0.6 \times 0.7 \times 0.8)$ $= 1 - 0.024 - 0.336$	M1		At least 1 new term correct
	= 0.64	A1	3	CAO; OE
	Total		10	

2	Ratios: Penalise first occurrence only of a correct answer			
(a)(i)	$P(Welsh back) = \frac{7}{50} \text{ or } 0.14$	В1	1	CAO; OE
(ii)	$P(English) = \frac{14+8}{50} =$	В1		Correct expression; PI
	$\frac{22}{50}$ or $\frac{11}{25}$ or 0.44	В1	2	CAO; OE
(iii)	P(not English) = 1 - (ii) =			
	$\frac{28}{50}$ or $\frac{14}{25}$ or 0.56	B1√	1	\nearrow on (ii) if used; 0
(iv)	$P(Irish \mid back) = \frac{P(Irish \cap back)}{P(back)} = \frac{6}{\sum(back)} =$	M1		Used; may be implied by values or answer
	$\frac{6}{23}$ or 0.26 to 0.261	A1	2	$CAO/AWFW (6/50 \Rightarrow 0)$

	Total		11	
	or 0.0317 to 0.032	A1	3	CAO/AWFW
	$\frac{175560}{5527200}$ or $\frac{209}{6580}$			
	$\left(\frac{22}{50}\right) \times \left(\frac{21}{49}\right) \times \left(\frac{20}{48}\right) \times \left(\frac{19}{47}\right) =$	M1 M1		Reducing non-tabulated value 4 times Reducing 50 and multiplying 4 terms (ignore multipliers)
(b)	$P(4 \times English) =$			
	$\frac{25}{46}$ or 0.54 to 0.544	A1	2	CAO/AWFW (25/50 \Rightarrow 0)
	$\frac{P(\text{forward} \cap \text{not Scottish})}{P(\text{not Scottish})} = \frac{\frac{14+5+6}{50-4}}{\frac{27-2}{50-4}} = \frac{27-2}{50-4}$	M1		Used; OE May be implied by values or answer
(v)	P(forward not Scottish) =			