

EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

CHEMISTRY

Mark Scheme

AQA
AS \& A LEVEL
1.
(a) (i)

Allow -CONH- or - COHN -
Mark two halves separately
lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

Not allow -($\left.\mathrm{C}_{6} \mathrm{H}_{12}\right)-$ Ignore n
(ii) M1 in polyamides - H bonding

M2 in polyalkenes - van der Waals forces
Penalise forces between atoms or van der Waals bonds

M3 Stronger forces (of attraction) in polyamides Or H bonding is stronger (must be a comparison of correct forces to score M3)

Do not award if refer to stronger bonds
(b) (i) (nucleophilic) addition elimination

Not allow $\mathrm{N}-\mathrm{H}_{2}$

Minus sign on NH_{2} loses M1
1
M2 not allowed independent of M1, but allow M1 for correct attack on C+

+ rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M 2
If CI lost with $\mathrm{C}=\mathrm{O}$ breaking, max 1 for M1
M3 for correct structure with charges but Ip on O is part of M4
only allow M4 after correct/ very close M3
For M4, ignore NH_{3} removing H^{+}but lose
M4 for Cl removing H^{+}in mechanism,
but ignore HCl as a product
(ii) N -methylpropanamide

Not N-methylpropaneamide
(c)

Allow - CONH - or $-\mathrm{COHN}-$
(d) (i) 2-amino-3-hydroxypropanoic acid
(ii)

Must be salts of aspartic acid
allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$
(iii) Penalise use of aspartic acid once in d (iii) and d (iv)

(iv) Penalise use of aspartic acid once in d (iii) and d (iv)

(Br^{-})
allow $-\mathrm{CO}_{2}^{-}$
must show C-N bond
don't penalize position of + on $N\left(\mathrm{CH}_{3}\right)_{3}$
2.(a) $\mathrm{Sn} / \mathrm{HCl}$ OR $\mathrm{Fe} / \mathrm{HCl}$ not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ nor any HNO_{3}

Ignore subsequent use of NaOH
Ignore reference to Sn as a catalyst with the acid
Allow H_{2} (Ni/Pt) but penalise wrong metal
But NOT NaBH $\mathrm{LiAlH}_{4} \mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Equation must use molecular formulae
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}+12[\mathrm{H}]$
$12[\mathrm{H}]$ and $4 \mathrm{H}_{2} \mathrm{O}$ without correct molecular formula scores 1 out of 2
$\rightarrow \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Allow $+6 \mathrm{H}_{2}$ if $\mathrm{H}_{2} / \mathrm{Ni}$ used
Allow - CONH - or -COHN - or $-\mathrm{C}_{6} \mathrm{H}_{4}-$

Mark two halves separately: lose 1 each for

- error in diamine part
- error in diacid part
- error in peptide link
- missing trailing bonds at one or both ends
- either or both of H or OH on ends

Ignore n
(b) $\quad \mathrm{H}_{2}(\mathrm{Ni} / \mathrm{Pt})$ but penalise wrong metal NOT $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaBH}_{4}$ etc.
CH_{2}

In benzene 120°

In cyclohexane $109^{\circ} 28$ or $1091_{2}{ }^{\circ}$
Allow $108^{\circ}-110^{\circ}$
If only one angle stated without correct qualification, no mark awarded
(c) (i) Nucleophilic addition
M4 for Ip , arrow and $\mathrm{H}+$
M2

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
- M1 and M4 include Ip and curly arrow
- Allow M4 arrow to \underline{H} in $\mathrm{H}_{2} \mathrm{O}$ (ignore further arrows)

M2 Attack (equally likely) from either side Not just planar bond without reference to carbonyl

M3 (about product): Racemic mixture formed OR 50:50 mixture or each enantiomer equally likely
(ii) M1 Planar $\mathrm{C}=\mathrm{O}$ (bond / group)

Not just planar molecule

3(a) (nucleophilic) addition-elimination
M2 M3

M4 for 3 arrows and lp
Allow wrong amine in M1 but penalise in M3
Allow $\mathrm{C}_{3} \mathrm{H}_{7}$ in M3
Minus sign on NH_{3} loses M 1 (but not M 4 if NH_{3} also shown here)

- Allow attack by: $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
- M2 not allowed independent of M1, but allow M1 for correct attack on C^{+}
- + rather than $\delta+$ on $C=O$ loses M2
- If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max 1 for M1
- M3 for correct structure with charges but lone pair on O is part of M4
- 3 arrows in M4 can be shown in two separate steps.
- If M3 drawn twice, mark first answer eg ignore missing + if missed off second structure
- Only allow M4 after correct / very close M3
- For M4, ignore RNH_{2} removing H^{+}but lose M 4 for Cl removing H^{+}in mechanism,
- but ignore HCl shown as a product.

N-propylethanamide must be this name even if wrong amine used NOT N-propylethaneamide
(b) (i)

Not allow ambiguous $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$
BEWARE No mark for the original amine $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Label and structure must both be correct for each type to score the mark.

Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
Penalize wrong number of carbons but otherwise correct, first time only.

M2
Aqueous or ethanolic
M2 only scores after correct M1

M3 Route A Intermediate $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ or propanenitrile
If M3 intermediate wrong, max 2 for M1 \& M2 ie no mark for stage 2

Name alone must be exactly correct to gain M1 but mark on if name close

But if M3 intermediate close, eg "nitrile" or wrong nitrile, can award marks in stage 2
correct formula gains M1 (ignore name if close)
If stage 1 correct and intermediate is missing, can award marks in stage 2
contradiction of name and formula loses mark
stage 1 wrong \& intermediate missing, no marks.

M4 Route A: stage $2 \quad \mathrm{H}_{2}$
H loses M4 but mark on
LiAlH_{4}
Apply list principle for extra reagents or catalysts.
M5 only scores after correct M4
Not NaBH_{4} not Sn or $\mathrm{Fe} / \mathrm{HCl}$
Allow (dil) acid after but not with LiAlH_{4}
Penalise conc acid.
M6 Route B $\quad \mathrm{NH}_{3}$
With acid loses M6 \& M7
Apply list principle for extra reagents or catalysts.

(ii) Route A disadv Toxic / poisonous KCN or cyanide or CN^{-}or HCN

Expensive LiAlH_{4} ignore acidified

OR lower yield because 2 steps

Allow H_{2} flammable / explosive etc.
Not just dangerous.
Ignore time reasons.

Route B disadv
Further reaction / substitution likely
Allow impure product.

