

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

AQA AS & A LEVEL

Mark Scheme

3.3 Organic chemistry

www.exampaperspractice.co.uk

(a) (i)

Reagent	Tollens	Fehlings or Benedicts	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄/H⁺	I₂/NaOH
			or acidified		
Propanal	silver (mirror)	red ppt or goes red (not red solution)	goes green	Ρ	No reaction
Propanone	no reaction	no reaction	no reaction		Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^2$ -/ H^+ then mark on)

3

(ii) propanal 3 peaks ignore splitting even if wrong

1

propanone 1 peak

1

(b) **X** is CH₃CH₂COOH or propanoic acid if both name and formula given, both must be correct, but

1

Y is CH₃CH(OH)CH₃ or propan-2-ol allow propanol with correct formula

1

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

K₂Cr₂O₇/H⁻ or other oxidation methods as above allow Cr₂O₇²⁻H⁻ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

1

·		reduction or nucleophilic addition	reduction or hydrogenation
	NaBH₄	LiAlH₄	H_2

or dry

1

1

in (m)ethanol or water or ether or dry Ni / Pt etc ether

1

[15]

X is CH₃CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile

Not ethanitrile

but contradiciton of name and structure lose marks

Y is CH₃CH₂NH₂ or ethylamine or aminoethane or ethanamine

Step 1: reagent KCN not HCN/HCl

condition (aq)/alcohol - only allow condition if reagent

correct or incomplete

Step 2: reagent H₂ LiAlH₄ Na Zn/Fe/Sn Not NaBH₄

condition Ni/Pt/Pd ether ethanol HCl

Z is an amine or aminoalkane or named amine even if incorrect name for **Z** secondary (only award if amine correct)

(Br-) + can be on N or outside brackets as shown

nucleophilic substitution

[9]

1

1

2

2

1

1

(a)
$$CH_3COCI + AICI_3 \rightarrow CH_3^{\overset{+}{C}}O + AICI_4^{\overset{-}{4}}$$
 equation (1)

2

1

penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside []

penalise wrong curly arrow in the equation or lone pair on AlCl₃ else ignore

Electrophilic substitution

NOT F/C acylation

 M_2

horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1

M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure

M1 arrow from within hexagon to C or to + on C

+ must be on C of RCO

3

(b) Nucleophilic addition NOT reduction

M2 not allowed independent, but can allow M1 for attack of H on C+ formed

1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene

(c) dehydration or elimination

(conc) H₂SO₄ or (conc) H₃PO₄ allow dilute and Al₂O₃ Do not allow iron oxides

1 **[14]**

1

1

[1]

(a) X contains > C=O (1)

if X and Y reversed lose this mark but allow remaining max 6/7

- .. X is CH₃CH₂COOH (1)
- : Y is CH₃CH₂CH₂OH (1)

Propanol
$$X$$
 reagent: acidified $K_2 Cr_2 O_7$ (1)

Y reagent: NaBH₄ (1)

Conc H₂SO₄: catalyst (1)

(b)

4

(c)
$$- O \overset{a}{C} H_2 - 3.1 - 3.9$$
 (1)

a: quartet (1) 3 adjacent H (1)

b: triplet (1) 2 adjacent H (1)

6

(d) 3269 cm⁻¹ .: OH alcohol (1)

$$\stackrel{\text{H}}{\sim} \stackrel{\text{H}}{\searrow} \stackrel{\text{OH (1)}}{\searrow}$$

2

Notes

(a) first mark for C=O stated or shown in **X** *Ignore wrong names*

Y CH₃CH₂CH₂OH

allow C₃H₇ in **A** if **Y** correct or vice versa

Allow (1) for A if correct conseq to wrong X and Y

other oxidising agents: acidified KMnO₄; Tollens; Fehlings

other reducing agents: LiAlH₄; Na/ethanol; Ni/H₂; Zn or Sn or Fe/HCl

- (b) give (1) for carboxylic acid stated or COOH shown in <u>each</u> suggestion (1) for correct E any 2 out of 3 for B, C or D allow C₃H₇ for either the B or D shown on the mark scheme i.e. a correct structure labelled B, C or D or E will gain 2.
- (c) protons a quartet must be correct to score 3 adjacent H mark. Same for b
- (d) allow (1) for any OH (alcohol) shown correctly in any structure ignore extra functional groups. Structure must be completely correct to gain second mark

[19]

[1]