

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **54 Minutes**

2002

CHEMISTRY

Edexcel AS & A LEVEL

Percentage

%

Mark Scheme

Paper 2: Advanced Organic and Physical Chemistry

www.exampaperspractice.co.uk

Score

/45

Question Number	Acceptable Answers	Reject	Mark
1 (a)	Alcohol; (2)-methylpropan-2-ol (1) Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Formula of alcohol Just acid/H ⁺ for catalyst	2

·	5	Mark
ap funnel / separating funnel	Buchner funnel	1
ap	o funnel / separating funnel	o funnel / separating funnel Filter funnel

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	To neutralize / remove/ react with (excess) acid	To purify it	1
	Allow To neutralize / remove / react with (excess) H ⁺	To remove excess acid and alcohol	
	To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst	Just "to quench acid catalyst/stop reaction"	
	Ignore additional comments on quenching or reaction stopping		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iii)	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/ Allow silica gel Allow formulae of drying agents	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iv)	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1) Thermometer in correct position with bulb opposite condenser opening (1) Ignore fractionating column if included between flask and condenser	Conical flask Flat bottomed flask	3

Question Number	Acceptable Answers	Reject	Mark
* 1 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made.	Just "the peaks are due to (CH ₃) ₃ and CH ₃	4
	Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio 3:9 or 1:3		
	OR		
	Peak due to $(CH_3)_3$ is 3x higher than peak due to CH_3 (1)		
	Third mark Environments are CH ₃ COO and (CH ₃) ₃ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule		
	OR		
	H-C-C=O (peak at 2.1) and H-C-C (peak at 1.3) (1)		
	Fourth mark Singlets/ no splitting as no H on adjacent C		
	OR		
	Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (d)(i)	CH ₃ COOCH ₂ CH(CH ₃) ₂ Or correctly displayed		1
	Allow CH ₃ COOCH ₂ CH(CH ₃) CH ₃		

Question Number	Acceptable Answers	Reject	Mark
1 (d)(ii)	The H on the CH ₃ COO		1
	Accept circle round all of first methyl group Accept a hydrogen in this environment if rest of molecule is incorrect	Circle round C of first methyl group	

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	Any acid with 6C (5C + COOH) which is chiral, so will have a branched chain		5
	C ₃ H ₇ CH(CH ₃) COOH		
	OR C_2H_5 CH(CH ₃) CH ₂ COOH		
	OR (CH ₃) ₂ CHCH(CH ₃) COOH (1)	Infrared indicates Q-	
	Infrared indicates (O-H present in a) carboxylic acid (1)	Infrared indicates alkyl group	
	High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown		
	Allow acids can form dimers. Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1)		
	(Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark		
	This may be shown by a chiral carbon being labelled in the formula (1)	lust "doos pot	
	Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4- dinitrophenylhydrazine/ (1)	Just "does not contain C=O (group)"	

Question Number	Acceptable Answers	Reject	Mark
1 (e)(ii)	No because the isomers (which are carboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1) OR		1
	Yes because could be distinguished by infrared fingerprint (1)	Yes because spectrum is unique	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	(Acid) hydrolysis	substitution	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ Potassium dichromate((VI)) / sodium dichromate((VI)) / dichromate((VI)) ions <i>ALLOW</i> manganate((VII)) ions, etc	Just "dichromate" chromates Correct formula with wrong name and vice versa Incorrect oxidation number	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAIH4 (in dry ether)	Just [H ⁻]	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	Methyl butanoate (1) $CH_3CH_2CH_2COOH + CH_3OH \rightarrow$ $CH_3CH_2CH_2COOCH_3 + H_2O$ (1) <i>ALLOW</i> \Rightarrow <i>IGNORE</i> state symbols even if wrong	Methyl butoate	2

Question Number	Acceptable Answers	Reject	Mark
2 (a)(v)	CH ₃ -CH ₂ -CH ₂ -CCCI Don't penalise undisplayed methyl groups as here. COCI must be displayed as above.	C_3H_7 for $CH_3CH_2CH_2$	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen)		1
	OR		
	Oxygen might react with chemicals going through column / sample might oxidise		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Solubility (in liquid / stationary phase) OR Interaction with liquid / stationary phase OR Interaction between mobile and stationary phase OR Attraction for liquid / stationary phase OR	Size of molecule / molar mass Polarity, unless with explanation Boiling point / volatility Viscosity Attraction for carrier gas	1
	Strength of (named) intermolecular forces OR Adsorption on liquid / stationary phase OR Absorption on liquid / stationary phase	Just a named intermolecular force Just 'retention time' Density	

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers $ \begin{pmatrix} H & 0 & H & 0 \\ -C & -C &$		2
	end should be shown More than two correct units IGNORE n after brackets		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Hydrolysis		1
	OR		
	Splits / breaks ester link	Just 'breaks	
	OR	polymer down'	
	polymer breaks down to monomers		
	OR		
	equation showing hydrolysis		

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	Sodium/potassium dichromate((VI))/potassium manganate ((VII))/Na ₂ Cr ₂ O ₇ /K ₂ Cr ₂ O ₇ /KMnO ₄	Just Cr ₂ O ₇ ²⁻ /MnO ₄ ⁻	1
	IGNORE references to acid		

Question Number	Acceptable Answers		Reject	Mark
3(a)(ii)	(Heat under) reflux Use excess/sufficient oxidizing agent/reagent named in (a)(i), even if incorrect IGNORE references to (excess) acid Stand alone marks	(1)		2

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	$CH_{3}CH_{2}CN/C_{2}H_{5}CN$ (1)	Hydroxynitriles	3
	ACCEPT displayed or skeletal formulae		
	$CH_3CH_2CN + H^+ + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	OR		
	$CH_{3}CH_{2}CN + HCI + 2H_{2}O \rightarrow CH_{3}CH_{2}COOH + NH_{4}CI$ (2)		
	If equation is incorrect then presence of H ⁺ or acid in equation/or above arrow and water on LHS scores (1) Mark cq on formula of nitrile		
	ALLOW one mark for the following equation without H^+ . CH ₃ CH ₂ CN + 2H ₂ O \rightarrow CH ₃ CH ₂ COOH + NH ₃		
	ALLOW two marks for either of the following with H^+ above the arrow $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_3$ $CH_3CH_2CN + 2H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	ALLOW answers for alkaline hydrolysis followed by acidification $CH_3CH_2CN + OH^- + H_2O \rightarrow CH_3CH_2COO^- + NH_3$ (1)		
	Then $CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$ (1)		
	If propanamide, $CH_3CH_2CONH_2$ is given initially then ALLOW the two equation marks for the hydrolysis $CH_3CH_2 CONH_2 + H^+ + H_2O \rightarrow CH_3CH_2COOH + NH_4^+$		
	If no acid is used then only one mark $CH_3CH_2 \text{ CONH}_2 + H_2O \rightarrow CH_3CH_2COOH + NH_3$		

Question Number	Acceptable Answers		Reject	Mark
3(b)	Reagent - Propanoyl chloride/CH ₃ CH ₂ COCl	(1)	Propyl chloride	3
	Any two from:			
	C-Cl bond is weaker (than C- 0)	(1)		
	Cl ⁻ /chloride (ion) is a better leaving group	(1)		
	Carbonyl carbon is more positive/more $\delta + /more$ attractive to nucleophiles	(1)	Just Cl is more electronegative	
	OR			
	Reagent - Propanoic anhydride/(CH ₃ CH ₂ CO) ₂ O	(1)		
	CH_3COO ⁻ /propanoate (ion) is a better leaving g	roup (1)		
	Carbonyl carbon is more positive/more $\delta + / more$ attractive to nucleophiles	(1)		
	IGNORE references to eversible/equilibrium/ catalysts IGNORE bond polarity			

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Radio waves/radio frequency	Just radio	1

Question Number	Acceptable Answers		Reject	Mark
3(c)(ii)	Any two from: Protons/nuclei/they have a property called spin/ have a magnetic moment/ have a magnetic field/ are aligned with the external magnetic field	(1)	starts to spin just dipole moment	2
	which flips/changes align against the external magnetic field (when radiation is absorbed)	(1) (1)	polarity flips any reference to electrons or molecules scores zero	

Question Number	Acceptable Answers		Reject	Mark
3(c)(iii)	Quartet ALLOW quadruplet/indication of four (peaks) Value from 0.1 to 1.9 (ppm) inclusive	(1)		2
	ACCEPT any range within the above range			