

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed

Score

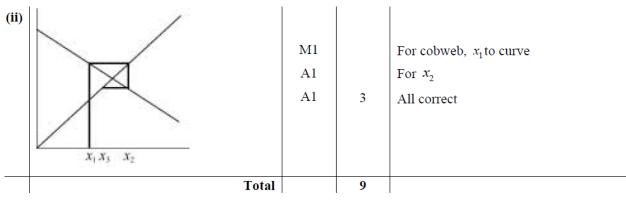
Percentage

/

%

Maths

AQA AS & A LEVEL


Mark Scheme

3.10 I: Numerical methods

www.exampaperspractice.co.uk

$2 \left \int_{1}^{3} -\sqrt{1} \right $	$\frac{1}{\sqrt{1+x^3}} \mathrm{d}x$			
1.5 2 2.5	y 0.707(1) 0.478(1) 0.333(3) 0.245(3)	B1 B1		3 correct SC B1 for all correct expressions but wrongly evaluated
	0.189(0) $\frac{1}{3} \times 0.5 \begin{bmatrix} y(1) + y(3) + \\ 4(y(1.5) + y(2.5)) + 2(y(2)) \end{bmatrix}$	M1		use of Simpson's rule
= 0.7	743 Total	A1	4	

6(a)	f(0.5) = -0.875 $f(1) = 2$	M1		
	f(1) = 2			
	Change of sign ∴ root	A1	2	
	3 . 4 . 2 . 0			
(b)	$x^{3} + 4x - 3 = 0$			
	$4x = 3 - x^3$	B1	1	
	$3-x^{3}$			
	$x^{3} + 4x - 3 = 0$ $4x = 3 - x^{3}$ $x = \frac{3 - x^{3}}{4}$			AG
(c)(i)	$x_1 = 0.5$	M1		
	$x_2 = 0.71875$ 0.72 AWRT	A1		
	$x_1 = 0.5$ $x_2 = 0.71875$ 0.72 AWRT $x_3 = 0.66$	A1	3	

1(a)	f(2) = -1 f(2.1) = +0.161	M1		both attempted
	change of sign $\therefore 2 < \alpha < 2.1$	A1	2	
(b)	$x^3 - x - 7 = 0$			
	$x^{3} - x - 7 = 0$ $x^{3} = x + 7$ $x = \sqrt[3]{x+7}$	B1	1	AG
(c)		M1		
	$x_2 = 2.0801$	A1		AWRT 2.08
	$x_1 = 2$ $x_2 = 2.0801$ $x_3 = 2.0862$ $x_4 = 2.09$			AWRT 2.09
	$x_4 = 2.09$	A1	3	
	Total		6	

6(a)
$$\therefore \int \ln x = 1(\ln 1.5 + \ln 2.5 + \ln 3.5 + \ln 4.5)$$
 | M1 A1 | use of 1.5, 2.5,...; 3 or 4 correct x values AWFW 4 to 4.2 | CAO

(c)
$$V = (k) \int \sec^2 x \, dx$$

 $= (k) \left[\tan x \right]_0^1$ A1
 $= 4.89$ A1 3 CAO

1	x = 1.5, 2.5, 3.5, 4.5				Method
			A1		x values
	$y_1 = 0.7115 \qquad 0.712$)			
	$y_2 = 0.5218$ 0.522	(ATTENT			
	$y_3 = 0.4439$ 0.444	AWRT	A1		3 correct y's
	$y_4 = 0.3993$ 0.399	J			
	$A = 1 \times (y_1 + y_2 + y_3 + y_4)$				
	= 2.08		A1	4	
		Total		4	

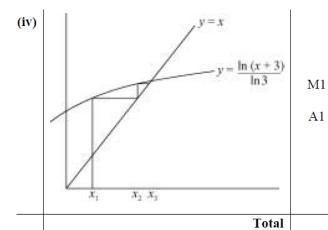
	$x_4 = 0.144$ Total	A1	7	
	$x_3 = 0.1378 = 0.138$			
` '	$x_1 = 0.1569 = 0.157$	A1		
(c)	$x_1 = 0.1$	M1		
	Change of sign∴ root	A1	2	
	f(0.2) = -0.23 allow -0.2			
	f(0.1)=0.17 allow 0.2, 0.1	M1		Or comparing 'sides'
(b)	$\cos^{-1} x - 3x - 1 = 0$			
	$B\left(0,\frac{\pi}{2}\right)$	B1	2	
8(a)	$A(-1,\pi)$	B1		

(b)	$V = 4 (\pi) \int_{2}^{4} (x - 1)^{3} dx$	M1		$(\pi)\int y^2 dx$
	$= 4 \pi \left[\frac{(x-1)^4}{4} \right]_2^4$	M1 m1		$k(x-1)^4(\pi)$ or in expanded form correct substitution of limits into $k(x-1)^4$
	$=\pi(81-1)=80\pi$	A1	4	CAO
(c)	Translate	E1 B1		OE
	(0) Stretch (I) SF 2 (II) // y axis (III)	M1 A1	4	for I and (II or III) for I and II and III

4(a)			y			
	x_0	1	3	B1		x values PI
	x_1	1.25	3.948(2)			
	x_2	1.5	5.196(2)	B1		(4 +) y values correct
	x_3	1.75	6.838(5)			
	x_4	2	9			
	$A = \frac{1}{3} \times \frac{1}{4} (3 +$	+ 4×3.9482	$2 + 2 \times 5.1962$			
			$+4 \times 6.8385 + 9$	M1		Simpson's rule
	= 5.46			A1	4	CAO
(b)(i)	$f(x) = 3^x - x$	(-3	e of sign ∴ root			
	f(0.5) = 0.69	change	e of sign ∴ root	M1A1	2	

(ii)	$3^{x} = x + 3$ $\ln 3^{x} = \ln (x+3)$
	$x\ln 3 = \ln\left(x+3\right)$
	$x \ln 3 = \ln(x+3)$ $x = \frac{\ln(x+3)}{\ln 3}$

M1 correct use of logs


A1

correct with no mistakes; AG

(iii) $x_1 = 0.5$ $(x_2 = 1.14)$ $x_3 = 1.29 = 1.3$

M1 A1 2 CAO

2

M1 staircase

2

12

 x_2 , x_3 correct and labelled on x-axis