

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

62 Minutes

OCR AS & A LEVEL

%

/52

Mark Scheme

Module 5: Physical chemistry and transiton elements

www.exampaperspractice.co.uk

C	Quest	ion	er	Mark	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE: Mg²+(g) + 2Cl⁻(g) → MgCl₂(s) (question asks for words)
	(b)	(i)	Hydration involves bond forming OR bonds are made ✓	1	ALLOW statement of any type of bond being formed ALLOW (chloride) ions attract water (molecules) ALLOW a response in terms of hydrogen bonds breaking AND bond making DO NOT ALLOW response stating that energy is required DO NOT ALLOW response that refers to ions in H ₂ O, eg H ⁺
		(ii)	\bigvee Mg ²⁺ (aq) + 2Cl ⁻ (g) \checkmark \bigvee Mg ²⁺ (aq) + 2Cl ⁻ (aq) \checkmark	2	Correct species AND state symbols required for both marks Mark each marking point independently ALLOW response on upper line: Mg ²⁺ (g) + 2Cl ⁻ (aq) (ie Cl ⁻ hydrated before Mg ²⁺) ALLOW MgCl ₂ (aq)

Question	er	Mark	Guidance
1 (b) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1921 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
(c)	Magnesium ion OR Mg ²⁺ is smaller OR Mg ²⁺ has greater charge density ✓ Mg ²⁺ has a stronger attraction to H ₂ O OR Mg ²⁺ has a stronger bonding with H ₂ O ✓	2	ORA: Calcium ion OR Ca ²⁺ is larger OR Ca ²⁺ has smaller charge density IGNORE idea of close packing of ions IGNORE 'atomic' and 'atoms' and assume that Mg or Ca refer to ions, ie ALLOW Mg has a smaller (atomic) radius ALLOW Mg has a stronger attraction to H ₂ O ORA: e.g. Ca ²⁺ has less attraction to H ₂ O DO NOT ALLOW Mg atoms have a stronger attraction to H ₂ O DO NOT ALLOW stronger attraction/bonding between ions Note: Response must refer to attraction/bonding with H ₂ O or this must be implied from the whole response
	Total	9	

Questi	ion	Expected Answers	Marks	Additional Guidance
2 a		F B G E D FIVE correct FOUR correct THREE correct	3	ALLOW 1450 736 G 76 -6
b		Correct calculation $-642 - (+76 + (2 \times 150) + 736 + 1450 + (2 \times -349)) \checkmark$ -642 - 1864 $= -2506 \checkmark (kJ mol^{-1})$	2	ALLOW for 1 mark: -2705 (2 × 150 and 2 × 349 not used for CI) -2356 (2 × 150 not used for CI) -2855 (2 × 349 not used for CI) +2506 (wrong sign DO NOT ALLOW any other answers
C		Magnesium ion OR Mg ²⁺ has greater charge (than sodium ion OR Na ⁺) OR Mg ²⁺ has greater charge density ✓ Magnesium ion OR Mg ²⁺ is smaller ✓ Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion OR Greater attraction between oppositely charged ions ✓	3	ALLOW magnesium/Mg is 2+ but sodium/Na is 1+ DO NOT ALLOW Mg atom is 2+ but Na atom is 1+ ALLOW 'charge density' here only ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg ²⁺ has a smaller atomic radius ALLOW anion OR negative ion for Cl ⁻ DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion) ALLOW reverse argument throughout in terms of Na ⁺
		Total	8	

Qu	esti	ion	Expected Answers	Marks	Additional Guidance
3	а		$(K_c =) \frac{[NH_3]^2}{[N_2] [H_2]^3} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ⁻² ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect K_c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0}$ OR 1.2 (mol dm ⁻³)		1st mark is for realising that concentrations need to be calculated.
			AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm ⁻³) \checkmark $[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)}$ \checkmark		Correct numerical answer with no working would score all previous calculation marks
			$= 0.876 \text{ OR } 0.88 \text{ (mol dm}^{-3}\text{) } \checkmark$		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH ₃ = $0.876 \times 6 = 5.26$ OR 5.3 (mol) \checkmark		ALLOW calculator value down to 5.3, correctly rounded

Question	Expected Answers	Marks	Additional Guidance
b	EXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT	IWATKS	Additional Guidance ALLOW ECF from incorrect concentrations (3 marks) For example, If concentrations not calculated at start, then $[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)} \checkmark$ $= 31.5 \text{ mol dm}^{-3} \checkmark$ Equilibrium amount of NH ₃ = $31.5 \times 6 = 189.6 \text{ (mol)} \checkmark$ IF candidate has K_c expression upside down, then all 4 marks are available in (b) by ECF Correct $[N_2]$ AND $[H_2]$ \checkmark $[NH_3] = \sqrt{\frac{[N_2][H_2]^3}{K_c}} = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}} \checkmark$ $= 11.0 \text{ mol dm}^{-3} \checkmark$ Equilibrium amount of NH ₃ = $11.0 \times 6 = 66.0 \text{ (mol)} \checkmark$ IF candidate has used K_c value of 8.00×10^{-2} AND values for N_2 AND H_2 with powers wrong, mark by ECF from calculated as below (3 max in (b)) Correct $[N_2]$ AND $[H_2]$ \checkmark $[NH_3]$ expression \times ECF: Calculated $[NH_3]$ \checkmark ECF: Equilibrium amount of NH ₃ \checkmark

Que	stic	on	Expected Answers	Marks	Additional Guidance
	С	i	Equilibrium shifts to right OR Equilibrium towards ammonia ✓ Right hand side has fewer number of (gaseous) moles ✓	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards'
					ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
		ii	\mathcal{K}_c does not change \checkmark Increased pressure increases concentration terms on bottom of \mathcal{K}_c expression more than the top \mathbf{OR} system is now no longer in equilibrium \checkmark top of \mathcal{K}_c expression increases and bottom decreases until \mathcal{K}_c is reached \checkmark	3	ANNOTATIONS MUST BE USED Any response in terms of K_c changing scores ZERO for Part (ii) ALLOW K_c is temperature dependent only OR K_c does not change with pressure ALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to K_c
	d	i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4+ H_2O \longrightarrow CH_3OH + H_2$ $CH_4+ 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4+ H_2O \longrightarrow 2H_2 + HCHO$ $CH_4+ 2H_2O \longrightarrow 3H_2 + HCOOH$
		ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Question	Expected Answers	Marks	Additional Guidance
e i	Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)
	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = $(2 \times 192) - (191 + 3 \times 131) \checkmark$ = $-200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within ΔG expression below) \checkmark		NO UNITS required at this stage IGNORE units
	$\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -92 - (298 \times -0.200)$ OR $\Delta G = -92000 - (298 \times -200)$		
	= $-32.4 \text{ kJ mol}^{-1} \text{ OR } -32400 \text{ J mol}^{-1} \checkmark$ (Units must be shown)	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown) Award all 5 marks above for correct answer with no working IF 25 °C has been used instead of 298 K, correctly calculated ΔG values are = -87 kJ mol ⁻¹ OR -87000 J mol ⁻¹
	For feasibility, $\Delta G < 0$ OR ΔG is negative \checkmark	1	4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks
ii	As the temperature increases, $T\Delta S$ becomes more negative OR $T\Delta S$ becomes more negative than ΔH OR $T\Delta S$ becomes more significant \checkmark	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T\Delta S$ ALLOW $-T\Delta S$ becomes more positive ALLOW $-T\Delta S$ decreases
	Eventually $\Delta H - T\Delta S$ becomes positive \checkmark		ALLOW ΔG becomes positive OR $\Delta G > 0$

Qu	estion	Expected Answers	Marks	Additional Guidance
	iii	Activation energy is too high OR reaction too slow ✓	1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
		Total	22	

Qu	esti	on	Expected answers	Marks	Additional guidance
4	а		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓		IGNORE 'Energy needed' OR 'energy required'
			from its gaseous ions ✓ (under standard conditions)	2	ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
					IGNORE reference to 'constituent elements' IGNORE : $2Na^{+}(g) + O^{2-}(g) \longrightarrow Na_2O(s)$ <i>Question asks for a definition, not an equation</i>
	b	i	C (or 2C) A B		ALLOW 496 (OR 992) –141 790
			D G		249 G OR
			E (or 2 E)		Lattice enthalpy/LE [OR answer to (ii)]
			F		108 (OR 216)
			All seven correct $\checkmark\checkmark\checkmark$ Five OR six correct $\checkmark\checkmark$ Three OR four correct \checkmark	3	-4
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2520 (kJ mol ⁻¹) award 2 marks		IF there is an alternative answer, check the list below for marking of answers from common errors
			$-414 = (2 \times 108) + 249 + (2 \times 496) + (-141) + 790) + \Delta H_{LE}$ OR		ALLOW for 1 mark : -1692 wrong sign for 414 -1916 2 × 108 and 2 × 496 not used for Na ⁺
			$\Delta H_{LE} = -414 - [(2 \times 108) + 249 + (2 \times 496) + (-141) + 790] \checkmark$		-2412 2×108 not used for Na ⁺ 2×496 not used for Na ⁺
			$= -414 - 2106 = -2520 \text{ (kJ mol}^{-1}) \checkmark$	2	+2520 wrong sign for final answer -2802 sign changed for 1st electron affinity of
					oxygen –2395.5 atomisation of oxygen halved

Question	Expected answers	Marks	Additional guidance
			Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only
C	ALLOW reverse argument throughout (ORA)		ANNOTATIONS MUST BE USED NOTE: For ALL marking points, assume that the following refer to 'ions', Mg ²⁺ , etc. For 'ions', ALLOW 'atoms' For Mg ²⁺ , Na ⁺ , O ²⁻ and S ²⁻ , ALLOW symbols: Mg, Na, O and S ALLOW names: magnesium, sodium, oxygen, oxide, sulfur, sulfide BUT DO NOT ALLOW molecules i.e. ALLOW Mg has a smaller (atomic) radius
	Comparison of size AND charge of cations Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge OR Na ⁺ has a smaller charge density ✓ IGNORE just Mg ²⁺ is small comparison required
	Comparison of size of anions S²- is larger OR S²- has a smaller charge density ✓ Comparison of attraction of a cation and an anion Mg²+ has stronger attraction OR Na+ has weaker attraction AND S²- has weaker attraction OR O²- has stronger attraction ✓	3	ORA O²- is smaller OR O²- has a larger charge density ✓ IGNORE just S²- is large comparison required ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions

Quest	ion	Expected answers	Marks	Additional guidance
d	i	Cycle needs formation of CO_3^{2-} ions (from C and O) \checkmark i.e. NOT breaking up of CO_3^{2-} ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
d	ii	 Mark allocation 1 - 2Na⁺(g) + CO₃²⁻(g) on a top line AND Na₂CO₃(s) on a lower line AND 'Lattice enthalpy' label (as below) links the lines ✓ 2 - 2Na⁺(g) + CO₃²⁻(g) on a top line AND 2Na⁺(aq) + CO₃²⁻(g) on a middle line AND 2Na⁺(aq) + CO₃²⁻(aq) on a lower line AND 'ΔH hydration' labels (as below) link the lines ✓ NOTE: For hydration labels, see diagram below 2 x hydration of Na⁺ OR hydration of 2 x Na⁺ is required 		ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below State symbols are required for ALL species IGNORE direction of any arrows until MARK 3 ALLOW Na ₂ CO ₃ (aq) on a lower line as an alternative for 2Na ⁺ (aq) + CO ₃ ²⁻ (aq) ALLOW CO ₃ ²⁻ hydrated first: i.e. 2Na ⁺ (g) + CO ₃ ²⁻ (aq) on middle line ALLOW two hydration stages combined i.e. 2Na ⁺ (g) + CO ₃ ²⁻ (g) on a top line AND 2Na ⁺ (aq) + CO ₃ ²⁻ (aq) on a lower line AND BOTH 'Hydration' labels link the lines ✓
		3 – ΔH solution' label BELOW Na ₂ CO ₃ (s) AND ALL arrows in correct directions ✓	3	IF cycle shown using NaCO ₃ , Na ⁺ and CO ₃ ⁻ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded – See APPENDIX 1 For an equation, only 1 mark can be awarded Lattice enthalpy = $-\Delta H$ (solution) Na ₂ CO ₃ + [2 x ΔH (hydration) Na ⁺] + ΔH (hydration) CO ₃ ²⁻

Question	Expected answers	Marks	Additional guidance
			OR Lattice enthalpy + ΔH(solution) Na₂CO₃ = 2 x ΔH(hydration) Na⁺ + ΔH(hydration) CO₃²⁻ ✓ IGNORE state symbols for equation approach
	Total	14	

For more help please visit our website www.exampaperspractice.co.uk