

Question	Answer	Mark
1(a)	Gas molecules (very) far apart OR empty space between gas molecules Molecules of liquid (very) <u>close together</u> /compact OR are touching (each other)	B1 B1
(b)(i)	Faster/more energetic water molecules evaporate/escape/leave Slower/less energetic molecules remain (so temperature is lower)	B1 B1
(b)(ii)	Water in wide container AND has water with larger surface (area) Rate of evaporation higher/faster/quicker OR higher chance of evaporation	B1 B1
		Total: 6

Question	Answer	Mark
2(a)	One of 1, 2 or 3: 1 Molecules move faster OR have more k.e./momentum 2 Molecules <u>hit walls</u> more often/more frequently 3 Molecules <u>hit walls</u> with greater force/impulse/harder	B1
(b)	1 mark for each of 1, 2 and 3 in (a) not given as answer to (a)	B2
(c)(i)	PV = constant OR $P_1V_1 = P_2V_2$ OR 98 × 4800 = P × 7200 65 kPa	C1 A1
(c)(ii)	To prevent the balloon bursting (as its volume increases) OR to reduce the pressure inside the balloon OR pressure difference between inside and outside balloon rises	B1
		Total: 6

3	(a	(i)	$P \times V$ values are 7500 or about 7500 OR If P/pressure doubles, V/volume halves OR vice versa	B1
			(so) PV = constant OR P α 1/V OR either in words	B1
		(ii)	temperature	B1
	(b)	(i)	P = hdg_OR_5.0 × 10 × 1000 50 000 Pa or 50 kPa	C1 A1
		(ii)	Volume of bubble <u>increases</u> Mass of gas <u>stays the same</u> Density of gas <u>decreases</u>	B2
				[Total: 7]
4	(a	(i)	any one from:	
т	Įά	(י)	(molecules) move randomly / in random directions	
			(molecules) have high speeds (molecules) collide with each other / with walls	[max 1]
		(ii)	collisions with walls/rebounding causes change in momentum (of molecules) force is rate of change of momentum / force needed to change momentum	[1] [1]
	(b)	(i)	$p_1V_1 = p_2V_2 \text{ OR } 300 \times 100 (\times 0.12) = p_2 \times 0.40 (\times 0.12)$	[1]
			750 kPa	[1]
		(ii)	(molecules) collide with walls more often owtte	[4]
			OR more collisions with walls per second or per unit time owtte greater force per unit area	[1] [1]

5	(a	(i)	 any 2 from: liquid molecules not in fixed positions / can move about / move past each other OR solid molecules have a fixed position liquid molecules have random arrangement OR solid molecules arranged regularly / in patterns / layers / lattice liquid molecules are (slightly) further apart (than solid molecules) OR reverse argument 	max. B2
		(ii)	energy / work / thermal energy / (latent) heat required AND	
			to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the <u>potential</u> energy of the molecules	B1
	(b)	(i)	E = ml in any form OR ml OR 1.65 × 330 000 = 540 000 J OR 544 500 J	C1 A1
		(ii)	chemical (energy in body) converted to thermal / internal (energy)	B1
				[Total: 6]
6	(a	p₁V	$V_1 = p_2 V_2$ in any form OR ($p_1 =$) $p_2 V_2 \div V_1$	C1
		p 1 ×	\times 470 = 800 × 60 OR (p_1 =) 800 × 60 ÷ 470	
		102	2 OR 100 kPa	A1
	(b)	mol	lecules would move faster/have more KE	B1
		moi	re (frequent)/harder collisions with walls/cylinder/piston	B1
		pre	ssure increases	B1
	(c)	use	of $p = F \div A$ in any form OR (F =) pA	C1
		(F =	=) 4400 N	A1

7	(a	ran sud	two of motion of smoke particles: dom/haphazard/unpredictable movement; lden changes of direction/zig-zag motion; bear/disappear from view OR go out of/come into focus;	B2
		coll air i	two of conclusions about air molecules: ide with smoke particles OR smoke particles collide with/moved by air molecules; molecules fast(er); molecules small(er) / light(er);	
			ve randomly;	B2
	(b)	(i)	 1 (the piston) moves to the right/out(wards) / is pushed away 2 (the pressure of the gas) remains constant 	B1 B1
		(ii)	(pressure of the gas) increases more frequent collisions (of gas molecules) with piston/walls/container	B1
			OR (gas molecules) collide with piston/walls/container with great(er) force	B1
			Т	otal: 8]