

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed

Score

Percentage

1

%

Maths

Mark Scheme

AQA AS & A LEVEL

3.9 H: Integration

www.exampaperspractice.co.uk

3(a)(i)
$$f := \frac{dy}{dx} = 4x^3 + 2$$
(ii)
$$\int \frac{2x^3 + 1}{x^4 + 2x} dx$$

$$= \frac{1}{2} \ln(x^4 + 2x) (+c)$$
M1
A1
2
B1
For $k \ln(x^4 + 2x)$
By substitution $k \ln u$ M1
correct A1

(b)(i) $u = 2x + 1$

$$du = 2 dx$$

$$\int x \sqrt{2x + 1} dx =$$

$$\int \left(\frac{u - 1}{2}\right) \sqrt{u} \frac{du}{2}$$

$$= \frac{1}{4} \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$
B1
B1
Must be in terms of u only incl. du
A1
3
AG

(ii)
$$\int_0^4 dx = \int_1^9 du$$
B1
$$\frac{1}{4} \int u^{\frac{3}{2}} - u^{\frac{1}{2}} = \frac{1}{4} \left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]$$

$$= \frac{1}{4} \left[\left(\frac{2}{5}(9)^{\frac{5}{2}} - \frac{2}{3}(9)^{\frac{3}{2}}\right) - \left(\frac{2}{5} - \frac{2}{3}\right)\right]$$
Sight of any of these 3 lines

A1

Total

AG

4

10

=19.86

=19.9

(b)
$$\int x^{-2} \ln x \, dx \qquad u = \ln x \quad dv = x^{-2}$$
 M1
$$du = \frac{1}{x} \quad v = -x^{-1}$$
 A1
$$\int = -\frac{1}{x} \ln x + \int x^{-2} \, dx$$
 A1
$$= -\frac{1}{x} \ln x - \frac{1}{x} (+c)$$
 A1 4

(ii)
$$R = \left[-\frac{1}{x} (\ln x + 1) \right]_{1}^{5}$$

$$= -\frac{1}{5} (\ln 5 + 1) + (\ln 1 + 1)$$

$$= \frac{1}{5} (4 - \ln 5)$$
A1
$$R = \left[\text{Their (b)} \right]_{1}^{5}$$
OE
$$A1$$
3 convincing argument; AG

(b)
$$\int x(2x+1)^{8} dx$$
 $u = 2x + 1$
 $du = 2 dx$

B1

OE

$$\int = \int \left(\frac{u-1}{2}\right) u^{8} \left(\frac{du}{2}\right)$$
 $= \frac{1}{4} \int u^{9} - u^{8} du$

$$= \frac{1}{4} \left[\frac{u^{10}}{10} - \frac{u^{9}}{9}\right]$$
B1

$$p \frac{u^{10}}{10} + q \frac{u^{9}}{9}$$

$$= \frac{(2x+1)^{10}}{40} - \frac{(2x+1)^{9}}{36} (+c)$$

B1

$$DE$$

all in terms of u . Condone omission of du

$$p \frac{u^{10}}{10} + q \frac{u^{9}}{9}$$

$$DE$$

A1

$$DE$$

OE

SC: correct answer, no working/parts in x (B1)

4(a)	$\int x \sin x \mathrm{d}x u = x$			
	$\int x \sin x dx u = x$ $\frac{dv}{dx} = \sin x$ $\frac{du}{dx} = 1 \text{where } \cos x$	M1		For differentiating one term and integrating other
	$\frac{du}{dx} = 1 v = -\cos x$ $\int = -x \cos x - \int -\cos x (dx)$	m1		For correctly substituting their terms into parts formula
		A1		
4 .	$= -x\cos x + \sin x \ (+c)$ $u = x^{2} + 5$	A1	4	CSO
(b)	du = 2x dx			
	$\int = \int \frac{1}{2} u^{\frac{1}{2}} (\mathrm{d}u)$	M1		$\int ku^{\frac{1}{2}}(\mathrm{d}u) \text{ condone omission of } \mathrm{d}u$
	$\int = \int \frac{1}{2} u^2 (du)$	A1		but M0 if dx
				$k = \frac{1}{2}$ OE
	$=\frac{u^{\frac{3}{2}}}{2}$	A1√		Ft $\int ku^{\frac{1}{2}} du$
	$-{3}$			
	$=\frac{1}{3}\sqrt{(x^2+5)^3}$ (+c)	A1	4	cso
	-			SC $\frac{2}{6}\sqrt{(x^2+5)^3}$ with no working B3
(c)	$y = x^2 - 9$			
	$x^2 = y + 9$ $V = \pi \int x^2 dy$	B1		Must have π and x^2 , condone omission
	$y = x^{2} - 9$ $x^{2} = y + 9$ $V = \pi \int x^{2} dy$ $= \pi \int (y + 9) dy$ $\left[y^{2} \right]^{2} \left[(y + 9)^{2} \right]^{2}$			of dy, but B0 if dx
	$= (\pi) \left[\frac{y^2}{2} + 9y \right]_1^2 \text{ or } (\pi) \left[\frac{(y+9)^2}{2} \right]_2^2$	M1		["their x^2 "dy integrated π not
	$= (n) \begin{bmatrix} 2 & + y \end{bmatrix}_1 \text{ or } (n) \begin{bmatrix} -2 \\ 2 \end{bmatrix}_1$			Limits 2 and 1 substituted in necessary
	$= (\pi) \left[20 - 9\frac{1}{2} \right]$	m1		correct order including – sign J
	$=10\frac{1}{2}\pi$	A1	4	CSO
	Total		12	

6(a)	$\int x e^{5x} dx$ $u = x \qquad dv = e^{5x}$			
	$u = x$ $dv = e^{5x}$	M1		integrate one term, differentiate one term
	$du = 1 v = \frac{1}{5}e^{5x}$	A1		
	$\int = \frac{1}{5}xe^{5x} - \int \frac{1}{5}e^{5x}dx$	A1		
	$= \frac{1}{5} x e^{5x} - \frac{1}{25} e^{5x} (+c)$	A1	4	
(b)(i)	$u = x^{\frac{1}{2}}$			
	$du = \frac{1}{2}x^{-\frac{1}{2}} dx$	M1		
	$u = x^{2}$ $du = \frac{1}{2}x^{-\frac{1}{2}} dx$ $\int = \int \frac{1}{1+u} \times 2 du$	A1	2	correct with no errors; AG
(ii)	$\int_{1}^{9} dx = \int_{1}^{3} \frac{2}{1+u} du$	m1		correct limits used in correct expression, ignoring k
	$= [2 \ln(1+u)]_1^3$	M1		for $k \ln (1+u)$
	$= 2\ln 4 - 2\ln 2$ $(= \ln 4)$	A1	3	ISW OE
	Total		9	