

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **49 Minutes**

2002

Physics

Mark Scheme

AQA AS & A LEVEL 3.7 Fields and their consequences (A-level only)

Percentage

%

58

www.exampaperspractice.co.uk

Score

/41

For more help please visit our website www.exampaperspractice.co.uk

(a) zero potential at infinity (a long way away)		
energy input needed to move to infinity (from the point)		B1
work done by the field moving object from infinity potential energy falls as object moves from infinity		
(b) Any pair of coordinates read correctly	B1	2
	C1	2
±1/2 square		
Use of $E_{\rho \text{ or }} V = (-) \frac{GM}{r}$	C1	
Rearrange for M		
6.4 (±0.5) × 10 ²³ kg		
(c) Reads correct potential at surface of Mars = -12.6 (MJ)	A1	3
or reads radius of mars correctly (3.5 × 10°)	C1	
equates to $\frac{1}{2}$ v ² (condone power of 10 in MJ)		
	C1	
use of v = $\sqrt{2GM/r}$ with wrong radius	•	
5000 ± 20 m s⁻¹ (condone 1sf e.g. 5 km s⁻¹)		
e.c.f. value of M from (b) may be outside range for other method 6.2 \times 10 $^{\circ}x \sqrt{their}$ M	A1	
(d) Attempts 1 calculation of <i>Vr</i>	B1	3
Many values give 4.2 so allow mark is for reading and using correct coordinates but allow minor differences in readings Ignore powers of 10 but consistent		
Two correct calculation of <i>Vr</i>	B1	
	וט	
Three correct calculations with conclusion		3
	B1	3 [11]

(a)

 (i) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave / escape the (Earth's) gravitational field (with no further energy input) Not gravity
Condone gravitational pull / attraction

	Condone gravitational pull / attraction		
		B1	
(ii)	$\frac{1}{2}mv^2 = \frac{GMm}{r}$		
		B1	
	Evidence of correct manipulation At least one other step before answer		
		B1	
(iii)	Substitutes data and obtains $M = 7.33 \times 10^{22}$ (kg) or		
	Volume = $(1.33 \times 3.14 \times (1.74 \times 10^6)^3$ or 2.2×10^{19}		
	$or \rho = \frac{3v^2}{8\pi Gr^2}$		
		C1	
	3300 (kg m ⁻³)		
		A1	
(Not given all their KE at Earth's surface) energy continually added in flight / continuous thrust provided / can use fuel (continuously)			
(0011	(indeasity)	B1	
energy	/ needed to achieve orbit than to escape from		

Less energy needed to achieve orbit than to escape from Earth's gravitational field / it is not leaving the gravitational field

B1

[7]

[1]

2

1

2

2

13

С

(b)