

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 62 Minutes

2002

Score

Percentage

/52

%

CHEMISTRY

Edexcel AS & A LEVEL

Mark Scheme

Paper 2: Advanced Organic and Physical Chemistry

www.exampaperspractice.co.uk

Question Number	Correct Answer	Reject	Mark
1 (a)	EITHER (consideration of kinetics)		2
	Rate of reaction increases (1)		
	As collisions are more frequent / increases frequency of collisions / more collisions per second		
	IGNORE Just 'more collisions' or just 'more successful collisions'		
	OR (if assumes an equilibrium reaction)		
	Yield increases / eq'm shifts to RHS (1)		
	Since fewer moles of gas / no moles of gas		
	(1) (1) tewer molecules of gas (on RHS)		
	MUST AWARD MARKS BY ONLY CONSIDERING ONE OF THE ROUTES – CANNOT score full marks via one mark from each route if 'MIX UP' KINETICS AND EQUILIBRIUM ARGUMENTS		
	Eg Rate increases, so yield of product increases scores (1)		

Question Number	Correct Answer		Rejec t	Mark
1 (b)	[FIRST, CHECK THE FINAL ANSWER IF ANSWER = 3.1 (tonnes), award 3 marks]			3
	EITHER			
	1 tonne C_6H_5ONa : 180/116 tonnes $C_6H_4(OH)(CO_2H)$	(1)		
	2.5 tonnes C_6H_5ONa : (180/116) x 2.5 (tonnes) $C_6H_4(OH)(CO_2H)$ at 100% yield (= 3.879 tonnes)	(1)	g	
	So actual yield = (180/116) x 2.5 x 79/1	00		
	(3.06) = 3.1 (tonnes)	(1)		
	OR			
	Moles C ₆ H ₅ ONa (= 2.5 x 10 ⁶ ÷ 116) = 21 551.7 (mol)			
		(1)		
	Moles C ₆ H₅ONa (79% yield) (= 21 551.7 x 0.79) = 17025.8 (mol)	(1)		
	Mass C ₆ H ₅ ONa (= 17025.8 x 180 = 3064644 g = 3.06 tonnes)			
	= 3.1 (tonnes) to 2SF	(1)		
	Correct answer TO 2 SF, no working (3)			
	Can work in g (instead of tonnes) until fin answer	nal		
	So final answer of 3.06 (tonnes) scores M1 and M2 only			
	Award only (1) mark for 3.07 (tonnes) without working			

Question Number	Correct Answer	Reject	Mark
1 (c)	Esterification / acylation / ethanoylation ALLOW 'acetylation'		2
	OR		
	'(nucleophilic) addition-elimination'		
	BOTH words (addition and elimination) are needed for this option		
	IGNORE 'Condensation'		
	(1)		
	CH₃COCI / ethanoyl chloride		
	$(CH_3CO)_2O / ethanoic anhydride$ (1)		
	ALLOW		
	CH ₃ COOH / ethanoic acid (in presence of H ₂ SO ₄)		
	Correct displayed / skeletal formulae		
	IGNORE		
	JUST 'acid anhydride' / 'acid chloride'		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	1^{st} Mark Mol CuO = (5.60/79.5) = 0.07044 / 0.0704 / 0.070 / 0.07 (1)		3
	2 nd Mark		
	Mol of nitric acid = (50 x 2.50/1000) = 0.125 (1)		
	3 rd Mark		
	Reacting ratio =2:1 and nitric acid less than double moles of copper oxide/ Reacting ratio =2:1 and copper oxide more than half of moles of nitric acid		
	OR moles acid needed to react with all CuO = (2 x 0.070 =) 0.140 which is more than 0.125		
	OR 0.125 mol nitric acid can only react with 0.0625 mol CuO (1)		

Question	Acceptable Answers	Reject	Mark
2 (b)	1^{st} Mark Moles product = 0.5 x 0.125 =0.0625 (1) Allow TE from moles HNO ₃		3
	2 nd Mark		
	Theoretical yield = (0.0625 x 295.6 =) 18.475 g		
	Allow ECF on multiplying moles product by 295.6		
	3 rd Mark		
	% yield = (12.52/18.475 x 100) = 67.767 / 67.8 / 68		
	(I) Alternative route for 2 nd and 3 rd Marks		
	mol product = $(12.52 / 295.6) = 0.04235$ (1)		
	% yield = (0.04235/0.0625 x 100 = 67.767 / 67.8/ 68 (1)		
	TE from (a)		
	If moles of product taken as 0.125, final answer = 33.88% which scores (2)	4.24% scores (0) overall	
	TE for calculation based on moles of copper(II) oxide which gives an answer between 60.128% and 60.506% max(2)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	Some product remains in solution/ some product does not crystallize	Incomplete reaction Just experimental error	1
	Allow loss of material on transferring, if explained, such as Crystals remain in / on filter paper 'Spitting' (of solution on heating) IGNORE References to impure reactants	'solution evaporates'	

Question Number	Acceptable Answers	Reject	Mark
2 (d)(i)	Covalent bond: (shared pair of electrons using) one electron from each atom (1) Dative covalent bond: (shared pair of electrons using) two electrons from same atom (1)		2

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	Double bond between N and one oxygen atom (1)		3
	Single bond between N and O* (1)		
	Dative single bond between N and one O atom (1)		
	Max 2 if any lone pair electrons are missing from any of the three oxygen atoms.		

Question	Acceptable Answers				Reject	Mark
Number						
	In (a) any uni	In (a) any units given must be correct.				
	Penalise incorrect units once only.					
	Ignore SF exc	Ignore SF except 1 SF in (i), (iii) and (iv). Penalise once only				
3	Volume	25(.00)	24.6(0)	24.5(0)		1
(a)(i)	Added/cm ³					
	24.55 (cm ³)				24.70	
	Allow 24.6 (cm	³)			24.60	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	NaOH + HCI \rightarrow NaCI + H ₂ O		1
	Ignore state symbols even if incorrect		

Question	Acceptable Answers	Reject	Mark
Number			
3	Number of moles of NaOH		1
	$= (24.55 \times 2.5) = 6.1375 \times 10^{-2} = 0.061375 $ (mol)	0.0613	
(a)(iii)	1000 OR 6.14 x $10^{-2} = 0.0614$	0.06	
	OR 6.1 x $10^{-2} = 0.061$		
	Allow TE from 20(a)(i)		

Question	Acceptable Answers	Reject	Mark
Number			
3	6.1375 x 10 ⁻² /0.061375/ 6.14 x 10 ⁻² / 0.0614/0.061(mol)		1
(a)(iv)			
	Allow TE = answer to (a)(iii)		

Question Number	Acceptable Answers			Reject	Mark
3	Multiply by 4 and by 36.5		(1)		2
(a)(v)	Using 6.1375 x 10 ⁻² gives 8.96075	= 8.96 (g)			
	OR Using 6.14 x 10 ⁻² gives 8.9644	= 8.96(g)			
	OR Using 6.1 x 10 ⁻² gives 8.906 Answer to 3 SF	= 8.91(g)	(1)		
	Correct answer without working score (2)				
	Allow TE from (a)(iv) ALLOW one mark for correct answer to 3SF multiplication by 4 has been omitted, e.g. (6 1375 x 10^{-2} x 36 5 - 2 2401875 -) 2 24	where the	(1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(vi)	The statement is valid as 8.96 ~9/very close	Just 'not valid / valid'	1
	Allow appropriate comment from answer to (a)(v) e.g 2.24 is not valid because it is too far away from 9g.		

Question Number	Acceptable Answers	Reject	Mark
3 a(vii)	(Too) corrosive Damages eyes/burns (skin)/caustic Ignore Dangerous/Strong/Too concentrated	Just 'Harmful/Irritant/Toxic/Hazardous' Acid	1

Question Number	Acceptable Answers	Reject	Mark
20 (b)	$H \overset{\circ}{} \overset{\circ}{} \overset{\times}{} \overset{\times}{$		1
	ALLOW ionic dot and cross		
	$ \begin{array}{c} \overbrace{\bigoplus}^{+} & \overbrace{\times}^{+} & \overbrace{\times}^{+} & \overbrace{\times}^{+} & \overbrace{\times}^{+} \\ \overbrace{\times}^{+} & \overbrace{\times}^{+} & \overbrace{\times}^{+} & \overbrace{\times}^{+} \\ \hline \end{array} \end{array} $ Or dative covalent bond from chlorine		
	$H \stackrel{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{$		

Question Number	Acceptable Answers		Reject	Mark
20 (c)	HCI + HOCI → H_2O + CI_2 Ignore state symbols even if incorrect Chlorine is toxic/poisonous Allow fumes are toxic	(1) (1)	Just 'Harmful/ irritant/dangerous/	2
	Ignore references to smell or colour		hazardous'	

Question Number	Acceptable Answers	Reject	Mark
3 (d)(i)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2
	Type: Disproportionation(1)Allow phonetic spellingsAllow redox and disproportionationSecond mark consequential on the first except if(i) all the oxidation numbers are zero(ii) the plus sign is missing,(iii) irst two oxidation numbers are correctand the third one is positiveIf all the elemental oxidation numbers are given	Just redox	

Question Number	Acceptable Answers	Reject	Mark
3 (d)(ii)	Heat/increase temperature ALLOW (more) concentrated NaOH	Just 'warm' / 'excess NaOH'	1
		Acid	

Question Number	Acceptable Answers		Reject	Mark
3 (d) (iii)	$\begin{array}{rcl} 3\text{Cl}_2 + 6\text{NaOH} \rightarrow 5\text{NaCI} + & \text{NaCIO}_3 + 3\text{H}_2\text{O}\\ \text{OR}\\ 3\text{Cl}_2 + 6\text{OH}^- \rightarrow 5\text{CI}^- + & \text{CIO}_3^- + 3\text{H}_2\text{O}\\ \end{array}$ Formula of NaClO ₃ / ClO ₃ ⁻ Rest of equation correct Ignore state symbols even if incorrect	(1) (1)		2

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)	Image: Constraint of the correct number of dots and crosses around both chromium atoms (1) All the oxygen atoms to have the correct number of bonds and the lone pairs (1) The extra 2 electrons from the potassium on the oxygen(s) (1)	Both * on the same oxygen	3

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$(n=14.71 \div 294.2 =) 0.0500 \text{ (mol)}$ (1)		2
	$(c = 0.0500 \div 0.25 =) 0.200 \text{ (mol dm}^{-3})$ (1) Allow TE on incorrect M _r value		
	Allow use of 294 Correct answer without working scores (2) Allow 1SF		
	If units are given then they must be correct		

Question Number	Acceptable Answers		Reject	Mark
4	$(0.00250 \times 6 =) 0.0150 \text{ (mol)}$			2
(b)(ii)	$(0.0150 \times 166 = 2.49 \text{ (g)})$	(1)		
	$2.6 \le value \le 5.0$ (g)	(1)		
	TE for suitable mass to use on incorrect calculation			
	Suitable mass must be between 0.10 g mo than the calculated value but less than or equal to double the calculated value	re		
	Allow 1 SF for the suitable mass			

Question Number	Acceptable Answers		Reject	Mark
4	(0.00260 x 2 =) 0.00520 (mol)	(1)		2
(b)(iii)	(V=0.00520 ÷ 0.16 x 1000 =) 32.5 (cm ³) / 0.0325 dm ³	′ (1)		
	Allow answer without working	(2)		
	Volume must be at least 3 SF			

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iv)	Percentage error large with a small mass/ Mass is only to 1 SF (1)	Just 'mass is not accurate' Reference to concentration.	2
	No repeats possible (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (c) (i)	$CI^{-} \rightarrow \frac{1}{2}CI_{2} + e^{(-)}$ OR $CI^{-} - e^{(-)} \rightarrow \frac{1}{2}CI_{2}$	Reverse equation	1
	Ignore state symbols even if wrong Allow multiples	lodide equation	
	$2\text{HCI} \rightarrow \text{CI}_2 + 2e^{(-)} + 2\text{H}^+$		

Question Number	Acceptable Answers	Reject	Mark
4 (c)(ii)	(Gas X) Ammonia / NH ₃ Allow ammonia (solution) / NH ₃ (aq) (1) (Observation) White smoke / solid		2
	ALLOW Dense white fumes/white cloud (1)	Misty fumes/ White gas/ White ppt/ Steamy fumes	
	The observation mark is consequential on the Gas X being correct or a near-miss		
	If name and formula given then both must be correct		

Question Number	Acceptable Answers		Reject	Mark
4 (d)	Cream ppt / solid ALLOW Off white / pale yellow	(1)	Just yellow/ Just white	3
	Cream ppt/AgBr remains in dilute NH ₃ but dissolves in conc. NH ₃	(1)	Just bromide ions	
	AgCI dissolves in both dilute and conc. NH ₃	(1)		