

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

## Time allowed 66 Minutes

2002

## CHEMISTRY

## Edexcel AS & A LEVEL

Percentage

%

Mark Scheme

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

Score

/55



| Question<br>Number | Correct Answer                                                                          |           | Reject | Mark |
|--------------------|-----------------------------------------------------------------------------------------|-----------|--------|------|
| <b>1</b> (a)(i)    | Mass of ethanoic acid = 0.04 x 60.1<br>= (2.404 g)                                      | (1)       |        | 2    |
|                    | Volume of ethanoic acid = 2.404 ÷ 1.049 =                                               |           |        |      |
|                    | $2.2917 = 2.3 \text{ (cm}^3\text{)}$                                                    | (1)       |        |      |
|                    | Correct answer with no working                                                          | (2)       |        |      |
|                    | Ignore SF except only one                                                               |           |        |      |
|                    | ALLOW                                                                                   |           |        |      |
|                    | 60.0 for molar mass which gives mass<br>2.4 and volume 2.288<br>= $2.3 \text{ cm}^3$    | ss<br>(2) |        |      |
|                    | OR                                                                                      |           |        |      |
|                    | First step 1.049 $\div$ 60/60.1 to find<br>number of moles in 1 cm <sup>3</sup> = 0.017 | (1)       |        |      |
|                    | Then volume = $0.04 \div 0.017$<br>= 2.3529 (cm <sup>3</sup> )                          |           |        |      |
|                    | But note, if whole calculation done o calculator, 60 gives 2.2879 and 61 g 2.2917.      |           |        |      |
|                    | If units given, they must be correct, penalise wrong units only once here.              |           |        |      |

| Question<br>Number  | Correct Answer               | Reject         | Mark |
|---------------------|------------------------------|----------------|------|
| <b>1</b><br>(a)(ii) | Syringe                      | Gas syringe    | 1    |
|                     | ALLOW<br>Burette             | Biuret         |      |
|                     | Graduated/adjustable pipette | Just 'pipette' |      |



| Question<br>Number   | Correct Answer                         | Reject | Mark |
|----------------------|----------------------------------------|--------|------|
| <b>1</b><br>(a)(iii) | To prevent                             |        | 1    |
|                      | evaporation/vapour escaping            |        |      |
|                      | water vapour entering                  |        |      |
|                      | OR<br>To maintain a closed system      |        |      |
|                      | OR<br>To maintain a closed environment |        |      |
|                      | ALLOW                                  |        |      |
|                      | To prevent:                            |        |      |
|                      | air oxidizing the alcohol              |        |      |
|                      | reaction with air                      |        |      |
|                      | OR<br>Due to volatility (of chemicals) |        |      |
|                      | IGNORE                                 |        |      |
|                      | gas escaping                           |        |      |
|                      | HCI escaping                           |        |      |



| Question    | Correct Answer                                                                                                                            |          | Reject                        | Mark |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|------|
| Number<br>1 | First and second mark                                                                                                                     |          |                               | 3    |
| (a)(iv)     | Phenolphthalein                                                                                                                           | (1)      | Litmus/universal<br>indicator |      |
|             | From colourless to (pale) pink/red                                                                                                        | (1)      | Pink to<br>colourless         |      |
|             | ALLOW<br>Other indicators with pK <sub>in</sub> in range 7.5<br>10                                                                        | _        |                               |      |
|             | Some examples are:                                                                                                                        |          |                               |      |
|             | Thymol blue ((base)) (yellow to blue)                                                                                                     |          | Thymol blue<br>(acid)         |      |
|             | Phenol red (yellow to red)                                                                                                                |          | Phenyl red<br>Methyl red      |      |
|             | Thymolphthalein (colourless to blue)                                                                                                      |          |                               |      |
|             | Second mark depends on correct indicate except bromothymol blue, which is incorrect but very close to range so all colour yellow to blue. |          |                               |      |
|             | Third mark<br>Sodium ethanoate is (slightly) alkaline                                                                                     |          |                               |      |
|             | OR<br>Ethanoic acid is a weak acid                                                                                                        |          |                               |      |
|             | OR<br>Phenolphthalein pH range coincides w<br>vertical section of the pH/titration curv                                                   |          |                               |      |
|             | OR<br>Titration of weak acid with strong base                                                                                             | <u>.</u> |                               |      |
|             | OR<br>Neutralisation/equivalence point is at 8<br>10/ any number between 8 and 10.                                                        | 3-       |                               |      |
|             | OR $pK_{in}$ +/-1 lies within vertical region                                                                                             | (1)      |                               |      |
|             | Third mark is independent                                                                                                                 | (1)      |                               |      |



| Question<br>Number | Correct Answer                                                              | Reject | Mark |
|--------------------|-----------------------------------------------------------------------------|--------|------|
| <b>1</b> (b)(i)    | $CH_{3}COOH+CH_{3}CH_{2}OH \rightleftharpoons CH_{3}COOCH_{2}CH_{3}+H_{2}O$ |        | 1    |
|                    | ALLOW                                                                       |        |      |
|                    | Single arrow                                                                |        |      |
|                    | -CO <sub>2</sub> H                                                          |        |      |
|                    | -C <sub>2</sub> H <sub>5</sub>                                              |        |      |
|                    | Displayed formulae                                                          |        |      |
|                    | IGNORE state symbols even if incorrect                                      |        |      |

| Question<br>Number  | Correct Answer                                                                                          | Reject | Mark |
|---------------------|---------------------------------------------------------------------------------------------------------|--------|------|
| <b>1</b><br>(b)(ii) | Volume of alkali reacting with ethanoic<br>acid = $77.1-11.7 = 65.4 \text{ cm}^3$ (1)                   |        | 2    |
|                     | Moles of ethanoic acid = $\frac{65.4 \times 0.200}{1000}$<br>= 0.01308/1.308x10 <sup>-2</sup> (mol) (1) |        |      |
|                     | Correct answer no working (2)                                                                           |        |      |
|                     | Ignore SF except 1                                                                                      |        |      |
|                     | Allow internal TE for use of                                                                            |        |      |
|                     | Moles of ethanoic acid = $\frac{77.1 \times 0.200}{1000}$                                               |        |      |
|                     | $= 0.01542/1.542 \times 10^{-2}$ (mol) max(1)                                                           |        |      |

| Question<br>Number   | Correct Answer                                                                          | Reject | Mark |
|----------------------|-----------------------------------------------------------------------------------------|--------|------|
| <b>1</b><br>(b)(iii) | Number of moles of ethanol =<br>0.01308/1.308x10 <sup>-2</sup> (mol)<br>TE same as (ii) |        | 1    |



| Question<br>Number  | Correct Answer                       | Reject | Mark |
|---------------------|--------------------------------------|--------|------|
| <b>1</b><br>(b)(iv) | Number of moles of ethyl ethanoate   |        | 1    |
|                     | =0.0400-0.01308 = 0.02692 (mol)      |        |      |
|                     | Allow TE from (ii)/(iii) for example |        |      |
|                     | 0.01542 gives 0.02458                |        |      |

| Question<br>Number | Correct Answer                                                                       |     | Reject | Mark |
|--------------------|--------------------------------------------------------------------------------------|-----|--------|------|
| <b>1</b><br>(b)(v) | $K_{c} = \frac{[CH_{3}CO_{2}CH_{2}CH_{3}][H_{2}O]}{[CH_{3}CO_{2}H][CH_{3}CH_{2}OH]}$ | (1) |        | 2    |
|                    | = <u>0.02692 x 0.02692</u><br>0.01308 x 0.01308                                      |     |        |      |
|                    | = 4.23579 = 4.24                                                                     | (1) |        |      |
|                    | Ignore SF except one                                                                 |     |        |      |
|                    | Allow TE from (ii), (iii) and (iv) for example                                       |     |        |      |
|                    | 0.01542 etc gives 2.54                                                               |     |        |      |
|                    | No TE for incorrect expression of $\mathrm{K}_{\mathrm{c}}$                          |     |        |      |

| Question<br>Number  | Correct Answer                                                | Reject | Mark |
|---------------------|---------------------------------------------------------------|--------|------|
| <b>1</b><br>(b)(vi) | The units cancel OR                                           |        | 1    |
|                     | There are the same numbers of moles of reactants and products |        |      |

| Question<br>Number   | Correct Answer                                  | Reject | Mark |
|----------------------|-------------------------------------------------|--------|------|
| <b>1</b><br>(b)(vii) | (Concentrated) hydrochloric acid contains water |        | 1    |



| Question<br>Number | Correct Answer                                |             | Reject                       | Mark |
|--------------------|-----------------------------------------------|-------------|------------------------------|------|
| <b>1</b> (c)(i)    | First test tube esterification                |             |                              | 2    |
|                    | OR                                            |             |                              |      |
|                    | addition/elimination                          |             |                              |      |
|                    | ALLOW<br>Condensation                         | (1)         |                              |      |
|                    | Second test tube (acid) hydrolysis            | (1)         | Alkaline hydrolysis          |      |
|                    | Two fully correct answers in wrong o<br>(1) ו | order<br>ma | followed by<br>acidification |      |

| Question<br>Number  | Correct Answer                                             | Reject       | Mark |
|---------------------|------------------------------------------------------------|--------------|------|
| <b>1</b><br>(c)(ii) | The values are the same within experimental error          | Justthe same | 2    |
|                     | OR                                                         |              |      |
|                     | The values are concordant                                  |              |      |
|                     | ALLOW                                                      |              |      |
|                     | The values are similar (1)                                 |              |      |
|                     | The equilibrium can be approached from either direction    |              |      |
|                     | OR                                                         |              |      |
|                     | The reaction is reversible                                 |              |      |
|                     | OR                                                         |              |      |
|                     | Any comment relating equilibrium to reversibility          |              |      |
|                     | IGNORE<br>Dynamic equilibrium                              |              |      |
|                     | OR                                                         |              |      |
|                     | Rate of reverse reaction = rate of<br>forward reaction (1) |              |      |



| Question<br>Number   | Correct Answer                                | Reject      | Mark |
|----------------------|-----------------------------------------------|-------------|------|
| <b>1</b><br>(c)(iii) | (Acid) catalyst (makes it faster)             | Initiates   | 1    |
|                      | OR<br>Provides H <sup>+</sup> (as a catalyst) | Reacts with |      |
|                      | OR<br>Protonates                              | Protates    |      |
|                      | OR<br>Protonating agent                       |             |      |
|                      | OR<br>Donates protons                         |             |      |
|                      | OR<br>Increases H <sup>+</sup> concentration  |             |      |



| Question<br>Number | Acceptable Answers                                                                                                                                                                  |     | Reject                                                                              | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|------|
| * <b>2</b> (a)     | (A green solution)<br>forms a yellow / orange / brown (solution)<br>ALLOW reddish-brown<br>A grey / black precipitate<br>ALLOW silver ppt<br>ALLOW solid / crystals for precipitate | (1) | Red<br>'Green(ish)'<br>with any other<br>colour<br>Silver mirror<br>silver compound | 2    |

| Question<br>Number | Acceptable Answers               | Reject | Mark |
|--------------------|----------------------------------|--------|------|
| <b>2</b> (b)(i)    | 0.05(00) (mol dm <sup>-3</sup> ) |        | 1    |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                            | Reject | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>2</b> (b)(ii)   | Amount of silver ion in 10 cm <sup>3</sup> =<br>amount of thiocyanate =<br>$5.6 \times 0.0200$ = 0.000112/1.12 x 10 <sup>-4</sup> (mol)<br>1000 (1)<br>So concentration of silver ion =<br>0.000112 x 1000 = 0.0112/1.12 x 10 <sup>-2</sup><br>(mol dm <sup>-3</sup> ) 10 (1) |        | 2    |

| Question<br>Number | Acceptable Answers                                     | Reject | Mark |
|--------------------|--------------------------------------------------------|--------|------|
| <b>2</b> (b)(iii)  | 0.0112/1.12 x 10 <sup>-2</sup> (mol dm <sup>-3</sup> ) |        | 1    |
|                    | Accept TE = answer to (ii)                             |        |      |

| Question<br>Number | Acceptable Answers                                                     | Reject | Mark |
|--------------------|------------------------------------------------------------------------|--------|------|
| <b>2</b> (b)(iv)   | $0.0500 - 0.0112 = 0.0388/3.88 \times 10^{-2}$ (mol dm <sup>-3</sup> ) |        | 1    |
|                    | Accept TE = 0.05 - answer to (iii)                                     |        |      |
|                    | Accept answer to (i) – answer to (iii)                                 |        |      |



| Question<br>Number | Acceptable Answers                                                                                                                                                    |     | Reject            | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|------|
| <b>2</b> (b)(v)    | $K_c = \frac{[Fe^{3+}(aq)]}{[Fe^{2+}(aq)] [Ag^+(aq)]}$                                                                                                                |     | [Ag] in numerator | 4    |
|                    | ALLOW $K_c = \frac{[Fe^{3+}]}{[Fe^{2+}] [Ag^+]}$ (1                                                                                                                   | 1)  |                   |      |
|                    | $= \frac{0.0388}{0.0112^2}$<br>= 309.311 = 309 dm <sup>3</sup> mol <sup>-1</sup>                                                                                      |     |                   |      |
|                    | Value (*                                                                                                                                                              | 1)  |                   |      |
|                    | Unit (any order) (                                                                                                                                                    | 1)  |                   |      |
|                    | Three SF (*                                                                                                                                                           | 1)  |                   |      |
|                    | Accept TE from (iii) and (iv):<br>( use of 0.1 from (i) gives 708 dm <sup>3</sup> mol <sup>-</sup>                                                                    | ·1) |                   |      |
|                    | If [Ag] is included in the numerator and<br>taken as =[Fe <sup>3+</sup> (aq)], then allow unit and s<br>marks ONLY, but must either state 'no unit<br>or show working |     |                   |      |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                                                   | Reject | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>2</b> (c)(i)    | $\Delta S^{e}_{total} = 8.31 \text{ x ln } 309$ $= + 47.6(4) / + 47.6(5) \text{ J mol}^{-1} \text{ K}^{-1}$ OR $= 8.31 \text{ x ln } 309.311 = +47.6(5) \text{ J mol}^{-1} \text{ K}^{-1}$ Accept TE : 8.31 x ln(answer from b(v)) Value (1) Sign <u>and</u> Unit (any order) (1) IGNORE sf except 1 | )      | 2    |



| Question<br>Number | Acceptable Answers                                                                                | Reject | Mark |
|--------------------|---------------------------------------------------------------------------------------------------|--------|------|
| <b>2</b> (c)(ii)   | First Mark:                                                                                       |        | 2    |
|                    | One of the products is a solid                                                                    |        |      |
|                    | OR                                                                                                |        |      |
|                    | Two moles going to two moles but one of them is a solid                                           |        |      |
|                    | OR                                                                                                |        |      |
|                    | Two moles of solution react to form one<br>mole of solution / liquid and one mole of<br>solid (1) |        |      |
|                    | Second Mark<br>(Hence) RHS more ordered / LHS less<br>ordered                                     |        |      |
|                    | (1)                                                                                               |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                                        | Reject | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>2</b> (c)(iii)  | $\Delta S^{e}_{surroundings} = \Delta S^{e}_{total} - \Delta S^{e}_{system}$<br>= +47.6 - (-208.3) = (+)255.9 (J mol <sup>-1</sup> K <sup>-1</sup> )<br>Accept TE on c(i) |        | 1    |
|                    | IGNORE sf except 1                                                                                                                                                        |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                                                              |     | Reject                                           | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|------|
| <b>2</b> (c)(iv)   | Because $\Delta S^{e}_{surroundings} = \frac{-\Delta H^{e}}{T}$                                                                                                                                 | (1) | $\Delta S^{e}_{total} = \frac{-\Delta H^{e}}{T}$ | 3    |
|                    | $\Delta H= -298 \times 255.9 = -76258 \text{ (J mol}^{-1}\text{)}$<br>= -76.258 (kJ mol <sup>-1</sup> )                                                                                         | (1) |                                                  |      |
|                    | Units if given must be correct<br>Correct answer with or without working<br>scores 2 marks                                                                                                      |     |                                                  |      |
|                    | IGNORE SF except 1                                                                                                                                                                              |     |                                                  |      |
|                    | As T increases $\Delta S^{e}_{surroundings}$ becomes less<br>positive / decreases<br>therefore<br>$\Delta S_{total}$ becomes less positive / decreases<br>ALLOW more negative for less positive |     |                                                  |      |



| Question<br>Number | Acceptable Answers                                                                                                                                 | Reject | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>2</b> *(d)      | No change in the titreALLOW No significant changeStand alone mark(1)                                                                               |        | 2    |
|                    | (though silver solid was removed the<br>equilibrium constant remains the same so)<br>the equilibrium concentration(s) would<br>remain the same (1) |        |      |
|                    | Second mark dependent on first<br>IGNORE references to temperature                                                                                 |        |      |



| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                         | Reject                                                     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|
| <b>3</b> (a)(i)    | (K <sub>p</sub> =) <u>pCH<sub>3</sub>CO<sub>2</sub>H</u><br>pCH <sub>3</sub> OH (x) pCO<br>Partial pressure symbol can be shown in various<br>ways, eg pp, p <sub>CO</sub> , (CO)p, etc<br><i>ALLOW</i> p in upper or lower case, round<br>brackets<br><i>IGNORE</i> units | [ ]<br>State symbols<br>given as (I)<br>+ in botto<br>line | 1    |

| Question<br>Number | Acceptable Answers                                           | Reject | Mark |
|--------------------|--------------------------------------------------------------|--------|------|
| <b>3</b> (a)(ii)   | P CH <sub>3</sub> OH = 4.9 (atm) (1)<br>P CO = 4.9 (atm) (1) |        | 2    |
|                    | 1 mark for recognition that pressures are equal              |        |      |
|                    | IGNORE units                                                 |        |      |
|                    |                                                              |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                          | Reject                                               | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|
| <b>3</b> (a)(iii)  | $K_{p} = ((22.2)/(4.9)^{2})$<br>= 0.925 (1)<br>atm <sup>-1</sup> (1) stand alone mark but must match<br>expression used in (a)(iii)<br>OR<br>9.25 x 10 <sup>4</sup> Pa <sup>-1</sup> / 92.5 kPa <sup>-1</sup> (2)<br><i>ALLOW</i> TE from (a)(i) if inverted and/or (a)(ii) | Answers to<br>other than 3<br>significant<br>figures | 2    |



| Question<br>Number | Acceptable Answers                                                                                                                                                                                              | Reject | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>3</b> (b)(i)    | CH <sub>3</sub> OH: 3.2<br>CO : 3.2 (1) for both values                                                                                                                                                         |        | 2    |
|                    | CH <sub>3</sub> CO <sub>2</sub> H: 46.8 (1)                                                                                                                                                                     |        |      |
|                    | ALLOW TE for moles of ethanoic acid based on<br>numbers of methanol and carbon monoxide<br>used, as long as moles of methanol and carbon<br>monoxide are equal and moles ethanoic acid +<br>moles methanol = 50 |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                        | Reject                                          | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| <b>3</b> (b)(ii)   | $\frac{46.8 \times 32}{53.2}$ = 28.2 / 28.1504 (atm)<br><i>IGNORE</i> sf except 1<br>Value = 28.16 if mol fraction rounded<br><i>ALLOW</i> TE from (b)(i) | 28.1<br><u>46.8 x 32</u> =<br>50<br>29.95 (atm) | 1    |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                                                                                                                                         | Reject | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| <b>3</b> (b)(iii)  | exothermic as yield / pp of ethanoic acid /<br>conversion of reactants/ K <sub>p</sub> is higher at lower<br>temperature / as equilibrium moves (right) at<br>lower temperature<br><i>ALLOW</i><br>if partial pressure of ethanoic acid < 22.2 atm<br>in (b)(ii), endothermic as yield / pp of ethanoic<br>acid / conversion of reactants/ K <sub>p</sub> is lower at<br>lower temperature |        | 1    |



| Question<br>Number | Acceptable Answers                                                                                                                                                                                                         | Reject                             | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|
| <b>3</b> (c)(i)    | No effect<br>and<br>other concentrations change to keep $K_p$<br>constant / $K_p$ is only affected by temperature/<br>as equilibrium moves (right) to keep $K_p$<br>constant / change in pressure does not change<br>$K_p$ | As K <sub>p</sub> is a<br>constant | 1    |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                                                                   | Reject                                         | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| <b>3</b> (c)(ii)   | Yield increased to restore fraction / quotient /<br>partial pressure ratio back to K <sub>p</sub><br><i>ALLOW</i> (equilibrium moves) to use up the<br>methanol /answers based on entropy or Le<br>Chatelier<br>Correct prediction in (c)(i) and (c)(ii) with<br>inadequate explanations scores 1 mark in<br>(c)(ii) | Just<br>'equilibrium<br>moves to the<br>right' | 1    |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                                                                                                                                                                                     | Reject                                      | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| 3 (d)              | Mark independently<br>Reaction can occur at lower temperature / has<br>lower activation energy / requires less energy<br>(1)<br>less fuel needed / fewer emissions (from fuels)<br>/ fewer raw materials needed / less natural<br>resources used (1)<br>OR<br>Enables use of an alternative process with<br>higher atom economy (1)<br>fewer raw materials needed / less natural<br>resources used (1) | Answer based<br>on car exhaust<br>emissions | 2    |