1 ((a (i) (power =) work (done)/time (taken) OR energy (supplied)/time (taken) OR rate of doingwork OR rate of supplying energyB1
(ii) box 2 (force acting on the object) AND box 5 (distance moved by the object) B1
(b) (i) multiplies mass of all passengers by h C1
(increase in gpe =) mgh OR uses $12 \times 650 \times 150$ C1
(power = increase in) gpe/time C1
$1.8 \times 10^{4} \mathrm{~W}$ OR 18 kW A1(ii) energy to raise the lift OR weight/load/mass of lift OR more weight/load/mass
2 (a (a (i) gravitational (potential energy) to kinetic (energy) B1
(ii) kinetic (energy) to elastic/strain (potential energy) B1
(iii) elastic/strain (potential energy) to kinetic (energy) B1
(b) $m g h$ OR $0.15 \times 10 \times 2.0$ OR $3(.0 \mathrm{~J})$ C1
$1 / 2 m v^{2}$ OR $v^{2}=2 g h$ C1
$v^{2}=2 \times 3.0 / 0.15$ OR 40 C1
$6.3(24555) \mathrm{m} / \mathrm{s}$ A1
(c) heat/thermal/internal energy lost OR ball/surface gains heat/thermal/internal energy B1
3 (a (i) kinetic B1
(ii) (GPE =) $m g h$ OR $1.0 \times 10 \times 300$ C1
3000 J A1
(iii) $Q=m c \Delta \theta$ in any form OR $Q \div m c$ OR $3000 \div[(1.0 \times) 4200]$ C1
$0.71^{\circ} \mathrm{C}$ A1
(iv) Energy used to heat air (via air resistance) / Heat lost to surroundings B1
OR Energy retained as KE of water (at bottom of waterfall)OR Sound (energy) produced
(b) Temperature change/difference is (very) small B1
$4 \quad$ (a Fd OR weight $\times d$ OR $m g h$ OR $30000 \times 10 \times 140$ OR 4.2×10^{7} seen anywhere C1
($P=$) E/t OR W/t OR mgh/t symbols or words C1
$4.2 \times 10^{7} / 60$ C1
$7.0 \times 10^{5} \mathrm{~W} / 700 \mathrm{~kW} / 0.7 \mathrm{MW}$ A1
(b) efficiency $=$ output $/$ input $\mathrm{OR}\left(P_{\text {in }}=\right) 100 \times P_{\text {out }} /$ efficiency
$\left(P_{\text {in }}=\right) 100 \times 7 \times 10^{5} / 70$
$1.0 \times 10^{6} \mathrm{~W}$ OR 1000000 W OR 1.0 MW A1
(c) (horizontal) wind has no effect on P.E gained/vertical force on waterOR same upward/vertical force acts on waterOR force from wind is horizontalB1
5 (a (i) $1 / 2 m v^{2}$ in words, symbols or numbers C1
$(v=\sqrt{ }(2 \times 1 / 2 \times 16.2)=) 4.0 \mathrm{~m} / \mathrm{s} \quad$ accept 4 A1
(ii) $m g h$ or $\mathrm{KE} / m g$ or $v=\sqrt{ }(2 \mathrm{gh})$ or $v^{2}=u^{2}+2$ as words, symbols or numbers C1
correct substitution e.g. $h=16.2 / 2 \times 10$ C1
0.81 m allow e.c.f. from 3(a)(i) A1
(iii) heating of water o.w.t.t.e. B2
compensation mark: award B1 for one of heat, internal energy, sound, KE of water ignore intermediate states throughout 3(a)(iii) e.g. KE/PE of splashed water
(b) same height M1
m affects both KE and GPE (in same way) $/ v^{2}=u^{2}+2$ as applies in both cases ignore "height doesn't depend on mass" A1
special case: M1 for logical argument about not all KE becoming GPEA1 for consequent statement about height gained
[Total: 9]
6 (a (i) (increase in g.p.e. $=m g h$ OR $65 \times 10 \times 8=$) 5200 J B
(ii) EITHER
k.e. gained = g.p.e. lost C1
$1 / 2 m v^{2}=5200$ in any form C1
$v^{2}=5200 /(0.5 \times 65)$ OR 160 C1
$v=12.6 \mathrm{~m} / \mathrm{s}$ e.c.f. (a)(i) A1
OR

$$
\begin{align*}
& v^{2}=u^{2}+2 a s / v^{2}=2 g h \tag{C1}\\
& v^{2}=2 \times 10 \times 8 \tag{C1}\\
& v^{2}=160 \tag{C1}\\
& v=12.6 \mathrm{~m} / \mathrm{s} \text { e.c.f. (a)(i) }
\end{align*}
$$(A1)

(b) speed is the same B1
EITHER
loss in g.p.e. is the same B1
k.e. gained is the sa B1
OR
acceleration is the same(B1)
distance fallen is the same (B1)

