

| 1 | (a (i)            | work OR rate of supplying energy                                                                                                                                       | B1                   |
|---|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|   | (ii)              | box 2 (force acting on the object) AND box 5 (distance moved by the object)                                                                                            | B1                   |
|   | (b) (i)           | multiplies mass of <u>all passengers</u> by h (increase in gpe =) mgh OR uses $12 \times 650 \times 150$ (power = increase in) gpe/time $1.8 \times 10^4$ W OR $18$ kW | C1<br>C1<br>C1<br>A1 |
|   | (ii)              | energy to raise the lift OR weight/load/mass of lift OR more weight/load/mass                                                                                          |                      |
|   |                   | T]                                                                                                                                                                     | otal: 7              |
|   |                   |                                                                                                                                                                        |                      |
| 2 | (a (i)            | gravitational (potential energy) to kinetic (energy)                                                                                                                   | B1                   |
|   | (ii)              | kinetic (energy) to elastic/strain (potential energy)                                                                                                                  | В1                   |
|   | (iii)             | elastic/strain (potential energy) to kinetic (energy)                                                                                                                  | B1                   |
|   | $v^{\frac{1}{2}}$ | $gh \text{ OR } 0.15 \times 10 \times 2.0 \text{ OR } 3(.0 \text{ J})$<br>$mv^2 \text{ OR } v^2 = 2gh$<br>$= 2 \times 3.0/0.15 \text{ OR } 40$<br>3(24555)  m/s        | C1<br>C1<br>C1<br>A1 |
|   | (c) he            | at/thermal/internal energy lost OR ball/surface gains heat/thermal/internal energy                                                                                     | , B1                 |
|   |                   | [Т-                                                                                                                                                                    | otal: 8]             |



- 3 (a (i) kinetic B1
  - (ii) (GPE =) mgh OR  $1.0 \times 10 \times 300$  C1 3000 J
  - (iii)  $Q = mc\Delta\theta$  in any form OR  $Q \div mc$  OR  $3000 \div [(1.0 \times) 4200]$  C1 0.71 °C
  - (iv) Energy used to heat air (via air resistance) / Heat lost to surroundings
    OR Energy retained as KE of water (at bottom of waterfall)
    OR Sound (energy) produced
  - (b) Temperature change/difference is (very) small B1

[Total: 7]

- 4 (a Fd OR weight × d OR mgh OR  $30\,000 \times 10 \times 140$  OR  $4.2 \times 10^7$  seen anywhere C1
  - (P = ) E/t OR W/t OR mgh/t symbols or words
  - $4.2 \times 10^7/60$
  - $7.0 \times 10^5 \text{ W} / 700 \text{ kW} / 0.7 \text{ MW}$
  - **(b)** efficiency = output/input OR ( $P_{in}$  =) 100 ×  $P_{out}$ /efficiency

$$(P_{\rm in} =) 100 \times 7 \times 10^5/70$$

$$1.0 \times 10^6 \text{ W OR } 1000\,000 \text{ W OR } 1.0 \text{ MW}$$

(c) (horizontal) wind has no effect on P.E gained/vertical force on water OR same upward/vertical force acts on water OR force from wind is horizontal

[Total: 8]

**B1** 



| 5                                                                                                                                                                                                                                           | (a  | (i)                                                                                                  | $\frac{1}{2}mv^2$ in words, symbols or numbers                                                                                                                                                                                                                      | C1                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                             |     |                                                                                                      | $(v = \sqrt{(2 \times \frac{1}{2} \times 16.2)}) = 4.0 \text{m/s}$ accept 4                                                                                                                                                                                         | A1                                                   |
|                                                                                                                                                                                                                                             |     | (ii)                                                                                                 | $mgh$ or KE/ $mg$ or $v = \sqrt{(2gh)}$ or $v^2 = u^2 + 2as$ words, symbols or numbers                                                                                                                                                                              | C1                                                   |
|                                                                                                                                                                                                                                             |     |                                                                                                      | correct substitution e.g. $h = 16.2/2 \times 10$                                                                                                                                                                                                                    | C1                                                   |
|                                                                                                                                                                                                                                             |     |                                                                                                      | 0.81 m allow e.c.f. from <b>3(a)(i)</b>                                                                                                                                                                                                                             | A1                                                   |
|                                                                                                                                                                                                                                             |     | (iii)                                                                                                | heating of <u>water</u> o.w.t.t.e. compensation mark: award B1 for one of heat, internal energy, sound, KE of water ignore intermediate states throughout <b>3(a)(iii)</b> e.g. KE/PE of splashed water                                                             | B2                                                   |
|                                                                                                                                                                                                                                             | (b) | sam                                                                                                  | ne height                                                                                                                                                                                                                                                           | M1                                                   |
| $m$ affects both KE and GPE (in same way)/ $v^2 = u^2 + 2as$ applies in both cas ignore "height doesn't depend on mass" special case: M1 for logical argument about not all KE becoming GPE A1 for consequent statement about height gained |     | re "height doesn't depend on mass" cial case : M1 for logical argument about not all KE becoming GPE | A1                                                                                                                                                                                                                                                                  |                                                      |
|                                                                                                                                                                                                                                             |     |                                                                                                      | [Tota                                                                                                                                                                                                                                                               | al: 9]                                               |
|                                                                                                                                                                                                                                             |     |                                                                                                      |                                                                                                                                                                                                                                                                     |                                                      |
| 6                                                                                                                                                                                                                                           | (a  | (i)                                                                                                  | (increase in g.p.e. = $mgh \ \mathbf{OR} \ 65 \times 10 \times 8 =$ ) 5200 J                                                                                                                                                                                        | В                                                    |
|                                                                                                                                                                                                                                             |     | (ii)                                                                                                 | EITHER<br>k.e. gained = g.p.e. lost<br>$\frac{1}{2} mv^2 = 5200$ in any form<br>$v^2 = 5200/(0.5 \times 65)$ OR 160<br>v = 12.6 m/s e.c.f. (a)(i)<br>OR<br>$v^2 = u^2 + 2as/v^2 = 2gh$<br>$v^2 = 2 \times 10 \times 8$<br>$v^2 = 160$<br>v = 12.6 m/s e.c.f. (a)(i) | C1<br>C1<br>C1<br>A1<br>(C1)<br>(C1)<br>(C1)<br>(A1) |
|                                                                                                                                                                                                                                             | (b) |                                                                                                      | eed is the same                                                                                                                                                                                                                                                     | В1                                                   |
|                                                                                                                                                                                                                                             |     | los:<br>k.e.                                                                                         | HER s in g.p.e. is the same . gained is the sa                                                                                                                                                                                                                      | B1<br>B1                                             |
|                                                                                                                                                                                                                                             |     |                                                                                                      | eleration is the same<br>cance fallen is the same                                                                                                                                                                                                                   | (B1)<br>(B1)                                         |
|                                                                                                                                                                                                                                             |     |                                                                                                      |                                                                                                                                                                                                                                                                     |                                                      |