

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

38 Minutes

OCR AS & A LEVEL

/32

Mark Scheme

Module 5: Physical chemistry and transiton elements

%

www.exampaperspractice.co.uk

C	Question		er		Guidance
1	(a)		$\begin{array}{ll} \textbf{process} & \textbf{increase decrease} \\ C_2H_5OH(I) \rightarrow C_2H_5OH(g) & \checkmark \\ \\ C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g) & \checkmark \\ \\ NH_4CI(s) + aq \rightarrow NH_4CI(aq) & \checkmark \\ \\ 4Na(s) + O_2(g) \rightarrow 2Na_2O(s) & \checkmark \\ \\ 2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I) & \checkmark \\ \\ \textbf{All 5 correct} & \longrightarrow \textbf{2 marks} \\ \end{array}$	Mark 2	
	(b)		4 correct → 1 mark ΔH: + AND bonds broken ✓	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within H ₂ O molecules are broken
		(1)	△S: + AND more random/more disorder/more ways of arranging energy ✓	2	IGNORE comments related to ΔG IGNORE comments related to ΔG
	(c)	(i)	$\Delta S = (3 \times 131 + 198) - (186 + 189) \checkmark$ $\Delta S = (+)216 (J K^{-1} mol^{-1}) \checkmark$	2	ALLOW 1 mark for –216 (wrong sign) ALLOW 1 mark for –46 (131 instead of 3 x 131) ALLOW 1 mark for 594 (sign of 189)

Question	er	Mark	Guidance
(c)	Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' ✓ 4. manufacture of HCl/hydrochloric acid 5. reduction of metal ores/metal oxides	1	2 uses for one mark IGNORE hydrogenation of margarine
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109, award first 3 marks for calculation		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	At 298 K, 91.2 = $176 - T\Delta S \checkmark$		ANNOTATE WITH TICKS AND CROSSES, etc
	$\Delta S = \frac{176 - 91.2}{298} = 0.285 \text{ (kJ K}^{-1} \text{ mol}^{-1})$ OR $\Delta S = \frac{176000 - 91200}{298} = 285 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ subsumes 1st marking point		ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758
	At 1000 K, $\Delta G = 176 - 1000 \times 0.285$ = -109 (kJ mol ⁻¹) \checkmark		ALLOW –109 up to calculator value correctly rounded, i.e. – 108.6, –108.56, etc
			ALLOW ECF from incorrect ΔS , <i>ie</i> calculated value of ΔG from $\Delta G = 176 - 1000$ x calculated value of ΔS
	Reaction does take place (spontaneously) because $\Delta G < 0$ OR ΔG is -ve \checkmark Note : If no value of ΔG , this mark cannot be awarded.	4	Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note : If candidate has a + ΔG value, mark ECF , ie reaction does not take place because $\Delta G > 0$ OR ΔG is +ve
	Total	11	

Question		on	Expected answers	Marks	Additional guidance
2	а		$\Delta G = \Delta H - T \Delta S \checkmark$	1	
	b		process sign		
			$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$		
			$NaCl(s) + (aq) \longrightarrow NaCl(aq)$		
			$H_2O(I) \longrightarrow H_2O(s)$		
			$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$		
			$CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4 \cdot 5H_2O(s)$		
			All 5 correct → 2 marks ✓ ✓ 4 correct → 1 mark ✓	2	
	С		$\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$		
			$\Delta S = (+)185 (J K^{-1} mol^{-1}) \checkmark$	2	ALLOW ECF from working line above from a single error
					COMMON ERRORS (+)3 (J K ⁻¹ mol ⁻¹)
	d		With increasing temperature $T\Delta S$ is more negative OR $T\Delta S$ decreases		ANNOTATIONS MUST BE USED
			OR $-T\Delta S$ increases OR $ T\Delta S $ increases		
			OR magnitude of T∆S increases ✓		DO NOT ALLOW just $T\Delta S$ increases
			At high temperature $T\Delta S$ is more negative that ΔH OR		DO NOT ALLOW At high T , ' $-T\Delta S$ is greater (than ΔH)'
			at high T , $T\Delta S$ outweighs/is more significant than ΔH		APPROACH BASED ON TOTAL ENTROPY:
			OR THE CONTRACTOR		With increasing temperature
			At low temperature $\Delta H - T\Delta S < 0$	2	$\Delta H/T$ is less negative OR $\Delta H/T$ increases OR $-\Delta H/T$ decreases OR $ \Delta H/T $ decreases
			At high temperature $\Delta H - T\Delta S > 0$	_	OR magnitude of ∆H/T decreases ✓
					ALLOW at high temperatures
1					$\Delta S - \Delta H/T < 0$

Question	Expected answers	Marks	Additional guidance	
			OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$	
e	(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T \Delta S$ OR $0 = \Delta H - T \Delta S$ OR $0 = 493 - T \times 543/1000 \checkmark$ $T = \frac{\Delta H}{\Delta S} = 493 \times 1000/543 \checkmark$ $= 908 \text{ K} \checkmark$ Units of temperature are required	3	ALLOW total entropy statement: ΔS(total) = 0 OR ΔS(total) >0 ALLOW 0 = 493 - T × 543 ✓ i.e. This mark focuses on ΔG OR ΔH - TΔS being = 0 and NOT on conversion of ΔS value into kJ K ⁻¹ moΓ ⁻¹ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in °C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 °C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 °C up to calculator value correctly rounded ALLOW C for °C; °K for K IF ΔS has not been converted to kJ, DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the	
		Total 10	statements required for 1st marking point	

Question	Answer	Mark	Guidance	
3 (a)	A: forms fewer moles/molecules of gas ✓ B: forms gas from a liquid ✓ C: forms liquid from gases ✓ D: forms more moles/molecules of gas ✓	4	Note: Responses must imply the key difference between the sides of the equation IGNORE comments about C(s)	
(b)	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ = 40 + 214 - 89 = 165 (J K ⁻¹ mol ⁻¹) = 0.165 (kJ K ⁻¹ mol ⁻¹) \checkmark At 25 °C, $\Delta G = +178 - 298 \times 0.165 \checkmark$ = (+)129 \checkmark units: kJ mol ⁻¹ \checkmark OR (+)129,000 \checkmark units: J mol ⁻¹ \checkmark	1	ANNOTATE WITH TICKS AND CROSSES, etc Mark is for the working line: $40 + 214 - 89 = 165$ UNITS have a separate mark ALLOW 129 to calculator value of 128.83 DO NOT ALLOW 128 (incorrect rounding) IF 25 °C used rather than 298 K, credit by ECF, calculated ΔG = 174 to calculator value of 173.875 ENTROPY APPROACH	
	As $\Delta G > 0$, reaction is not feasible OR as $\Delta G > 0$, CaCO ₃ is stable \checkmark Minimum temperature for feasibility when $0 = \Delta H - T\Delta S$ OR $\Delta H = T\Delta S$ OR $T = \frac{\Delta H}{\Delta S}$ \checkmark $= \frac{178}{0.165} = 1079$ K OR 806 °C \checkmark The units must be with the stated temperature	2	ALLOW At 25 °C, $\Delta S_{\text{total}} = 0.165 - \frac{178}{298} \checkmark$ = $-0.432 \checkmark \text{ kJ K}^{-1} \text{ mol}^{-1} \checkmark$ OR $-432 \checkmark \text{ J K}^{-1} \text{ mol}^{-1} \checkmark$ As $\Delta S < 0$, reaction is not feasible \checkmark ENTROPY APPROACH	
		Γotal 11		