

EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

CHEMISTRY

Mark Scheme

AQA
AS \& A LEVEL
(a) $\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ products $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ reactants or cycle (1) $=[(3 \times-393)+(3 \times-242)]-[+53](\mathbf{1})$ $=-1905-53$
$=-1958 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
(b) The enthalpy required to break a covalent bond (1) average over a wide range of compounds (1)
(c) In; $3 \times$ C-C; $3 \times 347=+1041$
$6 \times$ C-H; $6 \times 413=+2478$
$4.5 \times 0=0 ; 4.5 \times 498=+2241$
Total in +5760
(1)

Out; $6 \times$ C=O; $6 \times-805=-4830$
$6 \times$ O-H; $6 \times-464=-\underline{2784}$
Total out -7614
(1)

Enthalpy change $=5760-7614=-1854 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)} 3$
(d) Cyclopropane has a strained ring structure (1)

Bonds in cyclopropane are weaker OR
Bond enthalpies depend on environment OR
Mean bond enthalpies used in the calculation (1) 2
(a) Standard enthalpy of formation The enthalpy change when one mole of a compound $\mathbf{(1)}$ is formed from its consistuent element (1) in their normal or standard state (1) under standard conditions

Standard enthalpy of combustion The enthalpy change when one mole of a compound $\mathbf{(1)}$ is completely burnt in oxygen (1) under standard condition or at 298 K and $100 \mathrm{kPa}(\mathbf{1})$
(b) $\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ products $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ reactants or cycle (1)
$=3 \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}+4 \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{H}_{\mathrm{f}} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ (1)
$=-2022 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
3
(c) (i) Enthalpy $\begin{aligned} & =200 \times 4.2 \times 15(\mathbf{1)} \\ & =12.6 \mathrm{~kJ} \mathbf{(1)}\end{aligned}$
(ii) Moles $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=0.90 / 60$ (1)
12.6 kJ (1)
(iii) Enthalpy of combustion $=-12.6 / 0.015$ (1)

$$
=-840 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}
$$

(iv) Reason 1 Incomplete combustion

Heat lost to surroundings
Reason 2 Heat capacity of the apparatus
Any two (2) 8

EXAM PAPERS PRACTICE
3. (a) enthalpy change for one mole of compound (1) formed from its elements (1) in their standard states (1)3
(b) by definition (1) 1
(c) $\Delta \mathrm{H}=2 \times \Delta \mathrm{H}_{\boldsymbol{f}}^{\stackrel{\ominus}{f}}\left(\mathrm{CF}_{4}\right)+6 \times \Delta \mathrm{H}_{\boldsymbol{f}}^{\stackrel{\ominus}{f}}(\mathrm{HF})-\Delta \mathrm{H}_{\boldsymbol{f}}^{\stackrel{\ominus}{f}}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)(\mathbf{1})$ $=2 \times-680+6 \times-269-(-85)(\mathbf{1})$
$=-2889(1)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(d) (i) bond energies (enthalpies) vary between compounds (1)
\therefore an average value is used (1)
(ii) $\begin{array}{ll}\text { First step in the reaction } & \text { F-F bond breaks (1) } \\ \text { Reason } & \text { weakest bond (1) }\end{array} \$ 4$.
(a) (i) $\mathrm{N}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{4}$ (1)
(ii) $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
(iii)

$$
\begin{align*}
& \Delta \mathrm{Hf}=-484+568=+84 \mathrm{~kJ} \text { mol-1 (1) } \\
& {\left[\mathrm{OR} \Delta \mathrm{H}_{\mathrm{f}}=2 \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})-\Delta \mathrm{H}_{\mathrm{c}} \mathrm{~N}_{2} \mathrm{H}_{4} \mathbf{(1)}=84 \mathrm{~kJ} \text { mol-1 (1) }\right]} \tag{4}
\end{align*}
$$

(b) Enthalpy or heat required to break a covalent bond (1)

Average over a range of compounds
(c)

Hence $(\mathrm{N}-\mathrm{N})=872+945-84-1556 \mathbf{(1)}=177 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
Note:- Mark consequentially to $\Delta \mathrm{H}_{\mathrm{f}} \mathrm{N}_{2} \mathrm{H}_{4}$ from a(iii)
(d) The $\mathrm{N}-\mathrm{H}$ bond enthalpies used in the calculation were mean values or depend on environment (1)
(5)
(a) enthalpy change (1)
independent of reaction route (1)
(b) enthalpy change for $1 \mathrm{~mol}(1)$
completely burned in oxygen (1)
under standard condition (1)
(c) (i) Equation for formation of $\mathrm{CS}_{2} \quad \mathrm{C}(\mathrm{s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\mathrm{l})(\mathbf{1})$

Equation for combustion of $\mathrm{CS}_{2} \mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})(\mathbf{1})$
(ii) $\Delta H \stackrel{\ominus}{\mathbf{f}}=\Delta H \stackrel{\ominus}{\mathbf{C}}(\mathrm{C})+2 \Delta H \stackrel{\ominus}{\mathbf{C}}(\mathrm{~S})-\Delta H \stackrel{\ominus}{\mathbf{f}}\left(\mathrm{CS}_{2}\right)(1)$
(or correct cycle)
$=-394+2(-297)-88(\mathbf{1})$
$=-1076 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
(d) $\Delta H^{\ominus}=\Delta H_{\mathbf{f}}^{\ominus}(\mathrm{CO})+2 \Delta H \stackrel{\ominus}{\mathbf{f}}\left(\mathrm{SO}_{2}\right)-\left(\Delta H_{\mathbf{f}}^{\ominus}\left(\mathrm{CS}_{2}\right)+5 \Delta H \stackrel{\ominus}{\mathbf{f}}(\mathrm{NO})\right)(\mathbf{1})$ (or correct cycle)
$=-111+2(-297)-(88+5 \times 90)(\mathbf{1})$
$=-1243 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})$
6. (a) enthalpy change when 1 mol of a compound (1) is completely burned in oxygen (1) under standard conditions (1)
(b) $\mathrm{CH}_{3} \mathrm{SH}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \quad 1$
(c) enthalpies of combustion of $\mathrm{C}, \mathrm{H}_{2}, \mathrm{~S}$ one correct (1) three correct (2)
(or enthalpies of formation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}$) one correct (1)
three correct (2)
(d) $\Delta \mathrm{H}^{\boldsymbol{\ominus}}=-\Delta \mathrm{H}_{\boldsymbol{f}}^{\ominus}\left(\mathrm{CS}_{2}\right)+\Delta \mathrm{H} \stackrel{\ominus}{\boldsymbol{f}}\left(\mathrm{CO}_{2}\right)+2 \Delta \mathrm{H}_{\boldsymbol{f}}^{\stackrel{\ominus}{\boldsymbol{f}}}\left(\mathrm{SO}_{2}\right)(\mathbf{1})$
or cycle with the same information
$=-88-394-594$ (1)
$=-1076 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
+1076 scores one, -900 scores 1 cycle mark 3
(a) (The enthalpy/heat change) when one mole (1) is completely burned/combusted in oxygen/air (1)
under standard conditions or $100 \mathrm{~K} \mathrm{Pa/lbar/latm/760mm} \mathrm{Hg} \mathrm{(1)} \mathrm{and} 298 \mathrm{~K}$ or STP Penalise first mark if heat adsorped. Penalise first mask if "energy change" stated
(b) $\Delta \mathrm{H}_{\mathrm{R}}{ }^{\ominus}=\Sigma \Delta \mathrm{H} \stackrel{\ominus}{\boldsymbol{f}}$ products $-\Delta \mathrm{H}_{\boldsymbol{f}}^{\ominus}$ reactants or cycle or $\Delta \mathrm{H}_{\mathrm{R}}{ }^{\boldsymbol{\theta}}=\Delta \mathrm{H}_{\boldsymbol{f}}^{\stackrel{\ominus}{f}} \mathrm{CO}_{2}+2 \Delta \mathrm{H} \stackrel{\ominus}{\boldsymbol{f}} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{H}^{\boldsymbol{\ominus}} \mathrm{CH}_{4}(\mathbf{1})$
$=(-394)+2(-286)-(-75)(\mathbf{1})$
$=-891\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow +891 [max 1]
(c) (i) Enthalpy (Do not allow energy) required to break a covalent bond (1)

Allow second mark separately
averaged over (many) compounds (1)
(ii) $\Delta \mathrm{Ha}=\Sigma$ Bonds broken $-\Sigma$ Bonds made or cycle (1)
$\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$
Allow -415 to -416
Max (2)

Allow 1662 Max (1)

$\mathrm{C}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$	$\wedge 2 \Delta \mathrm{H}_{\mathrm{BE}} \mathrm{H}_{2}$		
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})$	$\wedge \Delta \mathrm{H}_{\mathrm{BE}} \mathrm{C}$		
	$\vee \Delta \mathrm{H}_{\mathrm{F}} \mathrm{CH}_{4}$	$\mathrm{CH}_{4}(\mathrm{~g})$	

$B E(\mathrm{C}-\mathrm{H})=\frac{715+2(436)-(-75)}{4}(\mathbf{1})=415 \cdot 5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
Allow 415-416
(iii) $4020=2 \mathrm{BE}(\mathrm{C}-\mathrm{C})+8 \mathrm{BE}(\mathrm{C}-\mathrm{H})(\mathbf{1})$

CE if $3 B E(C-C)$ used
$\mathrm{BE}(\mathrm{C}-\mathrm{C})+\frac{4020-8(415 \cdot 5)}{2}=348\left(\mathrm{kJmol}^{-1}\right)$
(1) Allow 346-350

Mark conseq
Note: Using 390, the given answer, BE (C-C) = 450 [2]
The common wrong answer in $C(i i)$ is 378 this gives $B E(C-C)$ as 498 conseq [2]

EXAM PAPERS PRACTICE
(a) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (1)

Ignore state symbols; ignore 'spectator' ions
1
(b) $\mathrm{MolH}+=50.0 \times 1 \cdot 00 / 1000=5 \times 10^{-2}$ (1)
(c) Heat energy evolved $=\mathrm{MC} \Delta \mathrm{T} / \mathrm{MS} \theta$ or in words (1)
$=100 \times 4.18 \times 6.5=2717$ Allow $2700-2717(1)$
or $=0.1 \times 4.18 \times 6.5=2.717$ Allow $2.7-2.717$ (1)
or $=0.1 \times 4.2 \times 6.5=2.730($ or 2730$)$ if 4.2 used for ' c ' Ignore units in part (c)
(d) Molar enthalpy change $=-2 \cdot 717 / 5 \cdot 00 \times 10^{-2}(\mathbf{1})$

Allow conseq to answers in (b) and (c)
Mark CE if this inverted

9 (a) standard enthalpy of formation (1)
allow enthalpy of formation under standard conditions
1 mol of a compound produced (1)
from elements under standard conditions (1)
reactants and products in standard states (1)
allow normal or most stable states under standard conditions correct explanation not linked to correct name
(b) (i) $\mathrm{NO}+\frac{5}{2} \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad$ or doubled (1)
allow two equations, single and doubled mark on from wrong moles of H_{2} (for which ΔH_{f} is zero)
(ii) $\mathrm{NO} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \quad \Delta H=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3} \quad \Delta H=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\frac{1}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \quad \Delta H=-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
correct equations or cycle (1)
$\therefore \Delta H=-91-46-242$ (1) $=-379 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
minus 1 for each wrong sign
if eqn in (i) and value in (ii) do not match, then MAX 2 ex 3
$\Delta H=\sum \Delta H_{\text {prod }}-\sum \Delta H_{\text {react }}$ (shown) gets 1 if zero otherwise
4
(a) (Enthalpy change) when $1 \mathrm{~mol}(\mathbf{1)}$ of a compound is formed from its constituent elements (1) in their standard states (1) Allow energy or heat, Ignore evolved or absorbed Mark each point independently
(b) (The enthalpy change for a reaction is) independent of the route (1) 1
(c) $\quad \Delta \mathrm{H}_{\mathrm{R}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ products $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ reactants (1)
$=[(3 \times-286)+(3 \times-394)]-(-248)(1)$
$=-1792(1)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Deduct one mark for each error to zero

11 (a) (Energy required) to break a given covalent bond (1) averaged over a range of compounds (1)

Penalise first mark if 'energy' I 'enthalpy' evolved
(b) (i) $4 \times \mathrm{C}-\mathrm{H}=4 \times 413=+1652$
$1 \times \mathrm{C}-\mathrm{C}=1 \times 347=347$
$1 \times \mathrm{C}=\mathrm{O}=1 \times 736=736$
$21 / 2 \times \mathrm{O}=\mathrm{O}=2.5 \times 498=1245(\mathbf{1})$
$=2735+1245=+3980(1)$
first mark for 4 : 1: 1 or 2735 ignore sign
(ii) $4 \times \mathrm{H}-\mathrm{O}=-4 \times 464=-1856$
$4 \times \mathrm{C}-\mathrm{O}=-4 \times 736=-2944(\mathbf{1})$

$$
=-4800(1)
$$

First mark for 4 : 4
(iii) $\Delta \mathrm{H}_{\mathrm{R}}=\sum$ Bonds broken $-\sum$ Bonds made

$$
=+3980-4800=-820(\mathbf{1})
$$

Conseq Mark for incorrect answers in (i) and (ii) as (i) Answer + (ii) Answer =
(a) $\begin{array}{lc}\text { \{heat } & \text { \{molecule } \\ \text { \{enthalpy change for formation of } 1 \mathrm{~mol} \text { of a } & \begin{array}{l}\text { \{substance } \\ \text { \{compound }\end{array}\end{array}$
(1)
from its elements (1)
in their standard states * (at $298 \mathrm{~K}, 100 \mathrm{kPa}$) (1)
$\left(^{*}\right)$ or natural/normal states at $298 \mathrm{~K}, 100 \mathrm{kPa}$
must have $2^{\text {nd }}$ mark to score third
(b) $\quad \mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{NO}_{2}(\mathrm{l})$
equation (1)
not $\times 2$
state symbols (1)
can score for unbalanced equation or $\times 2$
(c) Hess's law (1)
or $1^{\text {st }}$ Law or conservation of energy
(d) $\Delta H \stackrel{\ominus}{\boldsymbol{f}}$ refers to $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCN}(\mathrm{g})(1)$

$$
\begin{aligned}
& \Delta H^{\boldsymbol{\ominus}}=\frac{1}{2} \Delta H_{\boldsymbol{C}}^{\boldsymbol{\ominus}}\left(\mathrm{H}_{2}\right)+\Delta H_{\boldsymbol{C}}^{\boldsymbol{\ominus}}(\mathrm{c})+\frac{1}{2} \Delta H_{\boldsymbol{C}}^{\boldsymbol{\ominus}}\left(\mathrm{N}_{2}\right)-\Delta H_{\boldsymbol{C}}^{\boldsymbol{\ominus}}(\mathrm{HCN}) \\
& =-121 \quad-394 \quad+34 \quad-(-611)(\mathbf{1}) \\
& =+130\left(\mathrm{kJmol}^{-1}\right)(\mathbf{1}) \\
& \text { (for wrong answers allow) }
\end{aligned}
$$

13
(a) $\mathrm{C}_{3} \mathrm{H}_{6}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (1) (or multiple)
(b) (i) $\frac{1.45}{58}$ (1) $=0.0250$ (1)
allow 0.025
allow conseq on wrong M_{r}
1.45/100, CE; $\frac{1.45}{58.1}$ C.E.
(ii) heat released $=\mathrm{mc} \Delta \mathrm{T}$

$$
=100 \times 4.18 \times 58.1(\mathbf{1})
$$

if 1.45 used in place of $100 C E=0$

$$
\text { = } 24300 \text { J (1) (or 24.3kJ) }
$$

allow 24200 to 24300
ignore decimal places
units tied to answer
If use $0.1 \times 4.18 \times 51.8$ allow $1 / 2$ for 24.3 with no units
(iii) $\frac{24.3}{0.0250}=-972\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
allow -968 to -973
allow +972
allow conseq
allow no units
penalise wrong units
(c) (i) Heat loss (1) or energy loss
do not allow incomplete combustion
(ii) Difference: more negative (1) (or more exothermic)

QoL mark
Explanation: heat (or energy) released when water vapour condenses (1) 3 or heat/energy required to vaporise water or water molecules have more energy in the gaseous state
(d) $\Delta \mathrm{H}=\Sigma \Delta H_{\text {reactants }}-\Sigma \Delta H_{\text {products }}$ (1)

$=(2 \times-394)+(3 \times-286)+(-297)-(-1170)(\mathbf{1})=-773(\mathbf{1})$
ignore units even if wrong
Allow $1 / 3$ for +773

14 (a) Enthalpy (Energy) to break a (covalent) bond (1) OR dissociation energy Varies between compounds so average value used (1) QL mark

OR average of dissociation energies in a single molecule / e.g. CH_{4} Do not allow mention of energy to form bonds but with this case can allow second mark otherwise $2^{\text {nd }}$ mark consequential on first
(b) (i) $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$ (1)

Ignores s
(ii) $\quad \Delta \mathrm{H}=(\Sigma)$ bonds broken $-(\Sigma)$ bonds formed (1)
$=1 / 2 \times 944+3 / 2 \times 436-3 \times 388$ (1) $=-38 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
Ignore no units, penalise wrong units
Score 2/3 for -76
1/3 for +38
Allow 1/3 for +76
(c) $4(\mathrm{C}-\mathrm{H})+(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{H})-(6(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{C}))=-136(\mathbf{1})$
$(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{H})-((\mathrm{C}-\mathrm{C})+2(\mathrm{C}-\mathrm{H}))=-136$
$2(\mathrm{C}-\mathrm{H})=836(\mathbf{1})$
$(\mathrm{C}-\mathrm{H})=418\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
Note: allow (1) for -836
another (1) for -418
(a) (i) enthalpy (or heat or heat energy) change when

1 mol of a substance (1) (QL mark) is formed from its elements (1) all substances in their standard states (1) (or normal states at 298K, 100 kPa or std condits)
not STP, NTP
(b) enthalpy change (or enthalpy of reaction) is independent of route (1)
$\Delta H=\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\boldsymbol{\theta}}$ prods $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\boldsymbol{\theta}}$ reactants (or cycle) (1)
minimum correct cycle is:

$$
\begin{gathered}
\frac{\mathrm{MgO}+2 \mathrm{HCl}}{\frac{\mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}}{4}} \\
\Delta H=-642-286-(-602+2 \times-92)(\mathbf{1}) \\
=-142\left(\mathrm{~kJ} \mathrm{~mol} \mathrm{Cl}_{2}+\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}\right. \\
\text { penalise this mark for wrong units } \\
+142 \text { scores } 1 \text { mark out of the last three }
\end{gathered}
$$

(c) $\quad \Delta \mathrm{H}=m c T$ (1) $\quad($ or $m c \Delta T)$

$$
=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~J} \mathbf{(1)}
$$

mark is for 6720 J or 6.72 kJ

$$
\begin{aligned}
\text { moles } \mathrm{HCl}= & \frac{\text { vol }}{1000} \times \mathrm{conc}=\frac{50}{1000} \times 3 \mathbf{(1)} \\
= & 0.15 \mathbf{(\mathbf { 1 })} \\
& \text { if error here mark on conseq. }
\end{aligned}
$$

Therefore moles of MgO reacted $=$ moles $\mathrm{HCl} / 2(\mathbf{1})($ mark is for $/ 2, \mathrm{CE}$ if not/2)

$$
=0.15 / 2=0.075
$$

Therefore $\Delta H=6.72 / 0.075$ (1)
$=-90 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$
$k J$ must be given, allow 89 to 91
value (1)
sign (1); this mark can be given despite CE for $/ 2$
Note various combinations of answers to part (c) score as follows:

```
-89 to -91 kJ (8) (or -89000 to 91000J)
    no units (7)
+89 to +91 kJ (7) (or + 89000 to +91000J)
    no units (6)
-44 to -46 kJ (5) (or -44000 to -46000J)
    no units (4) if units after 6.72 or 6720 (5)
+44 to +46 kJ (4) (or +44000 to +46000)
    if no units and
    if no units after 6.72 or 6720 (3)
    otherwise check, could be (4)
```

16. (a) (i) enthalpy change when 1 mol of a substance (or compound) (QL mark)
is (completely) burned in oxygen (or reacted in excess oxygen) 1
at 298 K and 100 kPa (or under standard conditions)
(ii) heat produced $=$ mass of water $\times \mathrm{Sp}$ heat capacity $x \Delta T$ (or $m c \Delta T$)
$=150 \times 4.18 \times 64$ (note if mass $=2.12$ lose first 2 marks then conseq) $=40100 \mathrm{~J}$ or $=40.1 \mathrm{~kJ}$ (allow 39.9-40.2 must have correct units)
moles methanol $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=2.12 / 32$ (1)
$=0.0663$
$\Delta H=-40.1 / 0.0663=-605 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1}\right)}$
(allow -602 to -608 or answer in J)
(note allow conseq marking after all mistakes but note use of 2.12 g loses 2 marks
(b) $\Delta H=\Sigma \Delta H_{\mathrm{c}}{ }^{\ominus}$ (reactants) $-\Sigma \Delta H_{\mathrm{c}}{ }^{\ominus}$ (products) (or correct cycle)
$\Delta H_{\mathrm{c}}{ }^{\theta}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\Delta H_{c}{ }^{\theta}(\mathrm{CO})+2 \times \Delta H_{c}{ }^{\theta}\left(\mathrm{H}_{2}\right)-\Delta H$
$=(-283)+(2 \times-286)-(-91)$ (mark for previous equation or this)
$=-764\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (units not essential but lose mark if units wrong)
(a) enthalpy (or energy) to break (or dissociate) a bond;1
averaged over different molecules (environments); 1
enthalpy (or heat energy) change when one mole of a compound; 1
is formed from its elements; 1
in their standard states; 1
(b) enthalpy change $=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) or cycle; 1
$=4 \times 388+163+2 \times 146+4 \times 463-(944+8 \times 463) ; \quad 1$
(or similar)
$=-789$;
(+ 789 scores 1 only)
(c) (i) zero;
(ii) $A H=\Sigma$ (enthalpies of formation of products)
$-\Sigma$ (enthalpies of formation of reactants)
$=4 \times-242-(75+2 \times-133) ; \quad 1$
$=-777 ;$
(+777 scores one only)
(d) mean bond enthalpies are not exact
(or indication that actual values are different from real values)
(b) $\mathrm{Li}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiOH}(\mathrm{s}) \quad$ equation (1) ss (1)
(c) $\mathrm{Li}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Li}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \quad$ equation (1) ss (1)
(d) $\Delta \mathrm{H}=\Delta \mathrm{H} \stackrel{\ominus}{\boldsymbol{f}}(\mathrm{LiOH}(\mathrm{aq}))-\Delta \mathrm{H} \stackrel{\ominus}{\mathbf{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$ or cycle (1) $=-487-21-(-286)(\mathbf{1})$
$=-222\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
(allow (1) for - 201)
reactivity increases (1)
Relationship between ΔH^{\ominus} and reactivity none (1)
Reason reactivity governed by rate (or Ea) (1)

EXAM PAPERS PRACTICE
(20) moles methane $=\frac{0.10}{16}=6.25 \times 10^{-3} \mathbf{(1)}$
kJ evolved $=6.25 \times 10^{-3} \times 890=5.56(\mathbf{1})$
5.56×10^{3} joules $=(\mathrm{mc}) \Delta \mathrm{T}(\mathbf{1})$
$\Delta \mathrm{T}=\frac{5.56 \times 10^{3}}{120}=46.4 \mathrm{~K} \mathrm{(1)}$

