

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 72 Minutes

/61

%

CHEMISTRY

Edexcel AS & A LEVEL

Mark Scheme

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	Ammonia / barium chloride is toxic OR	References to just 'barium'	(1)
	Ammonia / barium chloride is poisonous		
	OR		
	Barium hydroxide is corrosive / caustic		
	OR Ammonia (solution) is corrective		
	Ammonia (solution) is corrosive OR		
	Ammonium chloride is harmful / eye-irritant		
	ALLOW	Ammonium chloride "is	
	Barium hydroxide is toxic / poisonous	toxic"	
	I GNORE Use of fume cupboard / gloves, etc		

Question Number	Acceptable Answers		Reject	Mark
1 (a)(ii)	$\Sigma S_{(products)} = ((2 \times 192) + (10 \times 70) + 124 =)$			(3)
	(+)1208 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Sigma S^{\theta}_{\text{(reactants)}} = ((2 \times 95) + 427 =)$			
	(+)617 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Delta S_{\text{system}}^{e} = (1208 - 617 =) +591 \text{ J mol}^{-1} \text{ K}^{-1}$ Allow units in any order	(1)		
	Correct answer without working scores 3	. ,		

Question Number	Acceptable Answers	Reject	Mark
* 1 (a)(iii	(Positive value as expected because) 3 moles → 13 moles / more moles of products (than reactants) Allow 'molecules' for moles If numbers (of compounds) are stated, then these must be 3 and 13 COMMENT: Ignore any type of particle(s) mentioned (Two) solids → a gas / a liquid (+ 1 solid) OR "No gaseous reactants, but gaseous products (formed)" (1)	(0) Overall if ΔS ^e system negative or entropy decrease	(2)

Question Number	Acceptable Answers	Reject	Mark
1 (b)	$\Delta S^{e}_{surroundings} = (-\Delta H \div T) = -\frac{162\ 000\ J\ mol^{-1}}{298\ K} $ (1 $= -543.6241611/-544\ J\ mol^{-1}\ K^{-1}$ Allow $-0.544\ kJ\ mol^{-1}\ K^{-1}$ (1 $Correct\ answer\ without\ working\ scores\ 2$ IGNORE sf except 1 sf	-543 543	(2)

Question	Acceptable Answers	Reject	Mark
Number			
1 (c)	$\Delta S^{\theta}_{total} = \Delta S^{\theta}_{system} + \Delta S^{\theta}_{surroundings}$		(1)
	$\Delta S_{\text{total}}^{\text{e}} = \text{ans (a)(ii)} + \text{ans (b)}$ = +591 - 544 = +47 J mol ⁻¹ K ⁻¹		
	TE on answers from (a)(ii) and (b)		

Question Number	Acceptable Answers	Reject	Mark
1 (d)	M1: $\Delta S^{o}_{surroundings}$ becomes less negative / more positive smaller in MAGNITUDE (because you are dividing $-\Delta H$ by a larger T) IGNORE Just "smaller" / just "decreases" / just "bigger" / just "greater" (1) M2: ΔS^{o}_{system} / ΔH are not (significantly) affected by a change in temperature (1) M3: (So) ΔS^{o}_{total} increases ALLOW a TE for M3 ΔS^{o}_{total} decreases, only if incorrect M1 (i.e. $\Delta S^{o}_{surroundings}$ becomes "less positive") (1) Mark M1, M2 and M3 in any order within candidate's answer		(3)

Question	Acceptable Answers	Reject	Mark
Number			
1 (e)(i)	$(K = e^{(-44/8.31)}) = 0.005017/5.017 \times 10^{-3}$		(1)
	Ignore any units		
	Allow any sf except 1 sf		

Question Number	Acceptable Answers	Reject	Mark
1 (e)(ii)	Barium hydroxide will not be (very) soluble / will be sparingly soluble and K value suggests that the equilibrium lies to the left-hand side / reactants OR (1x10 ⁻¹⁰ <) K <1 so reactants predominant No TE on incorrect large value in (e)(i)	Just 'K is small'	(1)

Question Number	Acceptable Answers	Reject	Mark
1 (e)(iii)	Hydroxides get more soluble as you descend Group 2 (1)		(2)
	M2: ΔS_{total}^{o} gets less negative / more positive as you go from $Ca(OH)_2$ to $Ba(OH)_2$		
	IGNORE Just "smaller" / just "decreases" / just "bigger" / just "greater"		
	ALLOW Reverse argument (1)		
	No TE on calculated value "more negative" for Ba(OH) ₂		
	Mark M1 and M2 independently		

TOTAL FOR QUESTION = 16 MARKS

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	+89.6 - [+32.7 + 165] (1)	2
	$= -108.1 \text{ J mol}^{-1} \text{ K}^{-1} / \text{ J K}^{-1} \text{ mol}^{-1}$		
	Value, sign and units (1)	
	Ignore SF except one		
	Internal TE for recognisable numbers allowed, for example:		
	ΔH ^e _{at} magnesium chloride (147.7→ -223.1))	
	Halving S ^e [Cl ₂] (82.5 → -25.6)		
	Correct answer with no working (2)	
	$+/\text{no sign } 108.1 \text{ J mol}^{-1} \text{ K}^{-1}/\text{ J K}^{-1} \text{ mol}^{-1}$ (1)	

For more help please visit our website www.exampaperspractice.co.uk

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	(The sign is negative because)		2
	Any two from:		
	(A solid and) a gas reacting to form a solid.		
	OR		
	(Entropy decreases because) a gas reacting to form a solid.	Energy	
	There are fewer ways of arranging particles in a solid than a gas or viceversa.		
	OR		
	Decrease in disorder as solid more ordered than gas or vice versa		
	Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule)		
	OR		
	Number of mol(es)/molecules decreases		
	OR		
	Fewer/less mol(es) of products than reactants		
		'(Positive) Answer is as expected'	

Question Number	Correct Answer		Reject	Mark
2 (b)	$\Delta S_{total}^{e} = \Delta S_{surroundings}^{e} + \Delta S_{system}^{e}$			2
	OR			
	= +2152 + (-108.1)			
	= (+)2043.9			
	Value 2043.9 / 2044	(1)		
	$= (+)2040 (J \text{ mol}^{-1} \text{ K}^{-1})$			
	3SF			
	This mark conditional on correct valu correct TE value from (a)(i)	e or (1)		
	Accept TE from (a)(i), for example,			
	-223.1 → +1928.9 → +1930			
	-25.6 → +2126.4 → +2130			
	Correct answer (2040, etc) with or without working scores 2			

Question Number	Correct Answer1		Reject	Mark
2 (c)	$\Delta S^{\theta}_{surroundings} = -\underline{\Delta H^{\theta}}_{200}$			2
	$\Delta H^{e} = -\Delta S^{e}_{surroundings} \times 298$			
	OR			
	$\Delta H^{e^{-}} = -2152 \times 298$	(1)		
	= -641.296			
	$= -641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	ALLOW			
	$= -641.3 \text{ x} 10^3 \text{ J mol}^{-1}$			
	Note			
	1640.1338 = -640.1 (if 2040/answer to part (b) used recalculate entropy change of surroundings first.)	to (2)		
	2. $\Delta H^{\bullet} = +641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	3. $\Delta H^{e} = -\frac{\Delta S_{surroundings}^{e}}{298}$	(0)		
	Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
2 (d)(i)	50 x 4.2 x 22.5		1
	= 4725 (J) Ignore sign		
	ALLOW		
	4.725 kJ		
	Ignore SF except one		

Question Number	Correct Answer	Reject	Mark
2 (d)(ii)	There are two legitimate answers to this part. If both methods have been used, you must send the item to review under mark scheme		2
	(-)4725 ÷ 0.0300		
	$= -157.5 \text{ (kJ mol}^{-1}) / -157500 \text{ J mol}^{-1}$		
	OR		
	(-)4725 ÷ 0.0500		
	$= /-94.5 \text{ (kJ mol}^{-1}) /-94500 \text{ J mol}^{-1}$		
	ALLOW		
	TE answer (d)(i) ÷ 0.0300/0.0500		
	Ignore SF except one		
	Value (1)	
	Sign (1)		
	The mark for the negative sign is awarded for their calculation even if value is wrong, providing any energy divided by moles or energy multiplied by 1/number of moles calculation has been done.		

Question Number	Correct Answer	Reject	Mark
2 (d)(iii)	There are two correct answers:		3
	Using 0.03 gives the answer of -381.75 kJ mol ⁻¹		
	Using 0.05 gives the answer of -350.25 kJ mol ⁻¹		
	Both these answers score full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	ΔH _{solution} + Lattice energy		
	$= \Delta H_{hydration} Mg^{2+} + (2)\Delta H_{hydration} CI^{-}$		
	Second mark (1)		
	$2 \Delta H_{hydration} CI^{-} = -2526 - 157.5 -$		
	(-1920) = -763.5		
	OR		
	$2 \Delta H_{hydration} CI^{-} = -2526 - 94.5 -$		
	(-1920) = -700.5		
	ALLOW		
	Any number or group of numbers minus (-1920) (1)		
	Third mark		
	$\Delta H_{hydration} CI^{-} = -381.75 \text{ (kJ mol}^{-1}\text{)}$		
	OR		
	$\Delta H_{hydration} CI^{-} = -350.25 \text{ (kJ mol}^{-1}\text{)}$		
	Any number, wherever it has come from,		

divided by two can score this mark, provided that the sign is consistent.	(1)	
Ignore SF except one		
Use of lattice energy – 2326 gives –281.75/–250.25 scores	(2)	
ALLOW		
TE from (d)(ii)		

For more help please visit our website www.exampaperspractice.co.uk

Question Number	Correct Answer	Reject	Mark
2 (d) (iv)	OH CI- HOOM	CI⁻.H ₂ O	1
	0-4 H Ce H-0'4		
	 One/several water molecule(s) all correctly orientated. 		
	 H^{δ+}/ hydrogen (one or two hydrogens from each water molecule) towards chloride ion 		
	with negative charge either on chlorine or on the whole hydrated ion.	H ^{δ-} / H ⁺ /	
	ALLOW		
	A minus sign with a ring around it for the CI Dende shown by lines (broken lines (detted)).	Cl ^{δ−} / Cl (with no charge)	
	 Bonds shown by lines/broken lines/dotted lines/wedges 		

Question Number	Correct Answer	Reject	Mark
2 (d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic.	The breaking of the lattice is	
	OR	exothermic.	
	Strong(er) forces between the $\delta +$ H and Cl ⁻		
	OR		
	Strong(er) forces between the $\delta-$ O and Mg ²⁺		
	OR		
	Strong(er) ion-dipole forces		
	OR		
	Formation of bonds releases energy		
	OR		
	Strong(er) bonds formed		
	OR		
	Enthalpy of hydration is greater than lattice energy		
	Second mark (1)		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW		
	Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly arranged	
	OR	arrangea	
	Water molecules more ordered/ clustered (around the ions). (1)	Ions more ordered	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	+104.6 - [+41.4 +165] (1)		2
	= -101.8 J mol ⁻¹ K ⁻¹		
	Value, sign and unit (1)		
	Ignore SF except one		
	Internal TE allowed for recognisable numbers, for example:		
	ΔH_{at}^{θ} calcium instead of S ^e (178.2 \rightarrow -238.6)		
	OR		
	Halving S ^e [Cl ₂] (82.5 → -19.3)		
	Correct answer with no working (2)		
	+/no sign 101.8 J mol ⁻¹ K ⁻¹ (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	(The sign is negative because)		2
	Any two from:		
	(A solid and) a gas reacting to form a solid.		
	OR (Entropy decreases because) a gas reacting to form a solid.	Energy	
	There are fewer ways of arranging particles in a solid than a gas or vice-versa.		
	OR Decrease in disorder as solid more ordered than gas or vice versa		
	Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule)		
	OR		
	Number of mol(es)/molecules decreases		
	OR Fewer/less mol(es) of products than reactants		
	COMMENT		
	If answer to (a)(i) is positive then answer should start	'(Positive) Answer is as expected'	
	'Answer is not as expected because'	ехрестец	
	Then score as above (which can score full marks).		

Question Number	Correct Answer	Reject	Mark
3 (b)	$\Delta S^{e}_{total} = \Delta S^{e}_{surroundings} + \Delta S^{e}_{system}$		2
	OR		
	= +2670 + (-101.8)		
	= (+)2568.2		
	Value 2568.2/2568 (1)		
	= (+)2570 (J mol ⁻¹ K ⁻¹)		
	3SF		
	This mark is conditional on correct value or correct TE value from (a)(i)		
	Accept TE from (a)(i)		
	-238.6 → +2431.4 → +2430		
	-19.3 → 2650.7 → +2650		
	Correct answer (2570, etc) with or without working scores (2)		

Question Number	Correct Answer1		Reject	Mark
3 (c)	$\Delta S^{\theta}_{surroundings} = - \underline{\Delta} H^{\theta}_{298}$			2
	$\Delta H^{e} = -\Delta S_{surroundings}^{e} \times 298$			
	OR = -2670 x 298			
	= -2070 X 298	(1)		
	= -795.660			
	= -795.7 (kJ mol ⁻¹)	(1)		
	ALLOW = $-795.7 \times 10^3 \text{ J mol}^{-1}$			
	Note			
	1796 = -796.1964 (if 2570 to calculate entropy change of surroundings first.)	used		
	2. ΔH^{e} (= + $\Delta S^{e}_{surroundings} \times 298$	8)		
	$= +795.7 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	But			
	$\Delta H^{e-} = - \frac{\Delta S^{e}_{surroundings}}{298}$	(0)		
	Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
3 (d)(i)	50 x 4.2 x 15.0 = 3150 (J) Ignore sign		1
	ALLOW		
	3.15 kJ		
	Ignore SF except one		

Question Number	Correct Answer		Reject	Mark
3 (d)(ii)	3150/0.05 or 20 x 3150			2
	= -63 (kJ mol ⁻¹) /-63000 J mol	-1		
	Allow TE answer (d)(i) / 0.05			
	Ignore SF except one			
	Value	(1)		
	Sign	(1)		
	The mark for the negative sign in awarded for the calculation eventhe value is wrong, providing an energy divided by moles or energy multiplied by 1/numbers calculation has been done	if y per of		

Question Number	Correct Answer	Reject	Mark
* 3 (d)	The correct answer:		3
(iii)	-380.5/-381 kJ mol ⁻¹		
	Full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	ΔH _{solution} + Lattice energy		
	= $\Delta H_{hydration} Ca^{2+} + (2)\Delta H_{hydration} CI^{-}$		
	Second mark (1)		
	$2 \Delta H_{hydration} CI^{-} = -2258 - 63 -$		
	(-1560) = -761		
	ALLOW		
	Any number or group of numbers minus (-1560)		
	(1)		
	Third mark		
	$\Delta H_{hydration} CI^{-} = -380.5/-381 \text{ (kJ mol}^{-1}\text{)}$		
	Any number, wherever it has come from, divided by two can score this mark,		
	provided that the sign is consistent. (1)		
	Ignore SF except one		
	Use of lattice energy – 2223 gives –363 scores (2)		
	ALLOW		
	TE from (d)(ii)		

Question Number	Correct Answer	Reject	Mark
3			2
(d)(iv)			
	H H		
	H H		
	0 (Co2+) 0 (CI) 0	Cl⁻.H ₂ O	
	H H		
	H N		
	OR #		
	Ĥ		
	,4		
	0-H ((g-) H-0.		
	14		
	F		
	0		
	O C H		
	One/several water molecule(s) all correctly orientated.		
	 H^{δ+}/ hydrogen (one or two hydrogens from each water 	H ^{δ-} / H ⁺ /	
	molecule) towards chloride ion and O / oxygen (one oxygen from each water molecule) towards calcium ion	H⁻	
	With negative charge either on chlorine or on the whole		
	hydrated ion and with double positive charge either on calcium or on the whole hydrated ion.		
	ALLOW		
	 A minus sign with a ring around it for the Cl⁻ and a 2+ 	Cl ^{δ-} / Cl (with no	
	sign with a ring around it for the Ca ²⁺	charge)	
	 Bonds shown by lines/broken lines/dotted lines/wedges 		

Question Number	Correct Answer	Reject	Mark
3 (d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic.	The breaking of the lattice is exothermic.	
	OR Strong(er) forces between the $\delta+$ H and CI $^-$	exothermic.	
	OR Strong(er) forces between the $\delta-$ O and \mbox{Mg}^{2^+}		
	OR Strong(er) ion-dipole forces		
	OR Formation of bonds releases energy		
	OR Strong(er) bonds formed		
	OR Enthalpy of hydration is greater than lattice energy (1)		
	Second mark		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly arranged	
	OR Water molecules more ordered/ clustered (around the ions). (1)	Ions more ordered	

Question Number	Acceptable Answers	Reject	Mark
4 (a)	Units are not required in (a) or (c) but if used should be correct. Penalise incorrect units in (a), (b) & (c) once only IGNORE case of J and K order of units		3
	First mark: $65.3/130.6$ and 69.9 (J mol ⁻¹ K ⁻¹) (1)		
	Second mark: $\Delta S = 69.9 - (130.6 + 102.5)$ (1)		
	Third mark: $\Delta S = -163.2 = -163 \text{ (J mol}^{-1} \text{ K}^{-1} \text{)}$ (1)	+163 or an positive answer	
	Correct answer with no working scores 3 Ignore SF except 1 SF TE at each stage If 65.3 used instead of 130.6 penalize once (answer is then $\Delta S = -97.9$ (J mol ⁻¹ K ⁻¹)		

Question Number	Acceptable Answers	Reject	Mark
4 (b)	$\Delta S_{\text{surroundings}} = -\Delta H / T \text{ or just numbers}$ (1) = +285800/298 = +959.06 = +959 J mol ⁻¹ K ⁻¹ / +0.959 kJ mol ⁻¹ K ⁻¹		3
	Correct value to 3SF (1)		
	Correct units and positive sign (1)	answer with no sign	
	Correct answer with no working scores 3		

Question Number	Acceptable Answers	Reject	Mark
4 (c)	$\begin{split} \Delta S_{total} &= \Delta S_{system} + \Delta S_{surroundings} \\ \text{Allow } \Delta S_{reaction} \text{ for } \Delta S_{system} \\ \Delta S_{total} &= \text{answer (a)} + \text{answer (b)} \\ &= -163.2 + 959 \\ &= (+)795.8 = (+)796 \text{ (J mol}^{-1} \text{ K}^{-1}) \end{split}$		2
	If $\Delta S_{surroundings} = +959.06$ then $\Delta S_{total} = +795.9$ (1)		
	Correct answer with no working scores 2 Ignore SF except 1 SF		
	TE on values in (a) & (b) no TE on incorrect equation		
	If answer to (a) = -97.9 (J mol ⁻¹ K ⁻¹) $\Delta S_{\text{total}} = (+)861.1 \text{ (J mol}^{-1} \text{ K}^{-1})$		

Question Number	Acceptable Answers		Reject	Mark
4 (d)	A mixture of hydrogen and oxygen is thermodynamically unstable because ΔS_{total} is positive		Reference to the stability of individual elements	2
	OR			
	Reaction between hydrogen and oxygen i thermodynamically feasible because ΔS_{total} is positive	S		
	ALLOW ΔS for ΔS_{total}	(1)		
	No TE on negative ΔS_{total} from (c)			
	The mixture is kinetically inert /stable or reaction is (very) slow because the activation energy is (very) high	(1)		
	Mixture / reaction is kinetically inert / stable but thermodynamically unstable feasible scores 1 mark	/		
	IGNORE References to spark / flame providing the (activation) energy for reaction)		