

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

Edexcel
AS & A LEVEL

Mark Scheme

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

Question Number	Acceptable Answers	Reject	Mark
1 (a)	(50 x 4.18 x 15.5 =) 3239.5 (J)		1
	IGNORE any sign given ALLOW 3.2395 kJ (units are essential for this answer)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	$(1.46 \div 56.1 =) 0.026025 $ (mol) (1)		2
	$(\Delta H = 3.2395 \div 0.026025 = -124.47)$ -124 kJ mol ⁻¹ (1)	+ sig	
	OR		
	$(1.46 \div 56.1 =) 0.0260 \text{ (mol)}$ (1)		
	$(\Delta H = 3.2395 \div 0.0260 = -124.596154)$ -125 kJ mol ⁻¹ (1)		
	ALLOW the use of CaO = 56 = $(-124.255 \text{ kJ mol}^{-1}) -124 \text{ kJ mol}^{-1}$		
	ALLOW TE from answer to (a)		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	Any three reasons from:	Incomplete reaction	3
	Heat/energy loss (to the surroundings / to the apparatus)/ Lack of lid/no lid/ heat capacity of the cup not taken into account/heat capacity of the cup is not zero (1)	Just 'heat lost to the thermometer'	
	Inaccuracy of thermometer/temperature readings (1)		
	Impure CaO/Absorbed moisture from the air (1)		
	Heat capacity is not 4.18/ the mass of solution is not 50 g/ density of solution is not 1 g cm ⁻³ (1)		
	IGNORE non-standard conditions/ stirring/human error/incomplete transfer of solid		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	Marking point 1 (Q=(250 x 4.18 x 25) = 26125(J)		3
	OR		
	$(26125 \div 1000 =) 26.125 (kJ)$ (1)		
	Marking point 2 $(n = 26.125 \div 196.8 =) 0.132749 \text{ (mol)}$ (1)		
	Marking point 3 Mass = (0.132749 x 56.1 =) 7.4472189 = 7.45 (g) (1)	7.5	
	ALLOW (0.132749 x 56 =) 7.433944 = 7.43 (g)		
	Correct answer alone scores 3 marks		

Acceptable Answers	Reject	Mark
arking point 1		4
ZHCI((aq)) alongside (1)		
Marking point 2		
Correct entities and states in box		
$CaCI_2(aq) + H_2O(I) + CO_2(g)$ (1)		
Marking point 3		
•		
e.g18.8190.8 = (1)		
Marking point 4		
$\Delta H = +178 (\text{ kJ mol}^{-1})$ (1)		
	arking point 1 Arrow downwards from $CaCO_3$ to the box, with 2HCI((aq)) alongside (1) Marking point 2 Correct entities and states in box $CaCI_2(aq) + H_2O(I) + CO_2(g)$ (1) Marking point 3 Correct use of Hess' Law ($\Delta H = \Delta H_{CaCO3} - \Delta H_{CaO}$) e.g. $-18.8196.8 =$ (1) Marking point 4	arking point 1 Arrow downwards from $CaCO_3$ to the box, with 2HCI((aq)) alongside (1) Marking point 2 Correct entities and states in box $CaCI_2(aq) + H_2O(I) + CO_2(g)$ (1) Marking point 3 Correct use of Hess' Law ($\Delta H = \Delta H_{CaCO3} - \Delta H_{CaO}$) e.g. $-18.8196.8 =$ (1) Marking point 4

Question Number	Acceptable Answers	Reject	Mark
Number 1(d)(ii)	Products on line below CaCO ₃ (s) with both arrows going down from CaCO ₃ and CaO Example CaO(s) + CO ₂ (g) (+ 2HCl(aq)) (2HCl(aq) +) CaCO ₃ (s) CaCl ₂ (aq) (+ CO ₂ (g) + H ₂ O(l))		1
	ALLOW the word 'products' for formulae		

Question Number	Acceptable Answers		Reject	Mark
2 (a)	(Contains) only (C—C) single bonds/ only σ bond(s)			2
	OR (Contains) no (C=C) double bond(s)/no triple bond(s)			
	OR Cannot undergo addition (reactions)			
	ALLOW Has maximum number of hydrogen atoms has maximum amount of hydrogen /can form no more bonds / no pi-bonds.	1		
	IGNORE references to alkanes	(1)		
	(Compound of) carbon and hydrogen ONLY/ENTIRELY/PURELY	(1)	"Mixture of carbon and hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Measure mass (of cylinder) before and after (burning)		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Energy transferred = (100 x 4.18 x 27.1 =) 11327.8 (J) / 11.328 kJ Ignore SF except 1 SF		1

Question Number	Acceptable Answers		Reject	Mark
2 (b)(iii)	Mol propane = 0.33/44 = 0.0075	(1)		3
	$\Delta H_c = (-11.3278/0.0075) = (-1510.4)$)		
	$= -1510 \text{ (kJ mol}^{-1}\text{)}$			
		(1)		
	Sign and 3SF	(1)		
	Allow TE from b(ii)			

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	Incomplete combustion Allow	Evaporation of water	1
	carbon monoxide forms soot forms	Transfer losses Not under standard conditions	
		Not all the fuel burns	
	Ignore references to specific heat capacity of the apparatus or evaporation of propane		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ + 6490 kJ mol ⁻¹		1
	3C(g) + 8H(g) + 10 O (g)		
	Balancing and state symbol required		

Question	Acceptable Answers	Reject	Mark
Number			
2 (c)(ii)	Z = (6x C=0 + 8x0-H = 4830 + 3712)		1
	$= (+)8542 \text{ (kJ mol}^{-1})$		

Question	Acceptable Answers	Reject	Mark
Number			
2 (c)(iii)	$\Delta H_X = 6490 - 8542 = -2052 \text{ (kJ mol}^{-1}\text{)}$		1
	Allow TE from 21(c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Bond energy calculation based on $H_2O(g)$ OR ΔH_c^{\bullet} based on $H_2O(I)$ Allow Bond energy varies with environment/ mean bond energies do not equal actual bond energies for these reactants Ignore reference to standard conditions		1

Total = 12 marks

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	25 x 4.18 x 11 = 1149.5 (J) ALLOW 1.1495 kJ	1149.5 kJ	1
	Otherwise ignore units even if incorrect		
	IGNORE sign		
	IGNORE SF except one or two SF		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	-115 kJ mol ⁻¹ ALLOW -115000 J mol ⁻¹		2
	Sign with correct value (1)		
	Units and three significant figures (1)	J or kJ alone	
	Mark independently		
	ALLOW TE from (i)		
	-114 kJ mol ⁻¹ (rounding error) scores 1		
	-115.0 kJ mol ⁻¹ scores 1		
	Values of -4600 and -3.86 are quite common		
	ALLOW K and j in any case in units		

	EXAM PAPERS PRACTICE		
Question Number	Acceptable Answers	Reject	Mark
3 (b)	2NaHCO ₃ (s) Na ₂ CO ₃ (s) + CO ₂ (g) + H ₂ O(l) 2HCl(aq) (2HCl(aq))		5
	2NaCI(aq) + 2CO2(g) + 2H2O(I)		
	First mark		
	Arrow from products in top line to lower line and correct entities (1)		
	NaCl + CO ₂ + H ₂ O		
	Second mark		
	$2NaCI(aq) + 2CO_2(g) + 2H_2O(I)$		
	Correct state symbols and balancing (1))	
	$\Delta H^{o} = +91.6 \text{ OR } +91.7 \text{ (kJ mol}^{-1}\text{)}$		
	ALLOW no positive sign only if correct		
	Working with correct signs given (3)		
	OR		
	Third mark		
	Correct use of Hess's Law		
	(in numbers or symbols) consistent		
	with arrow direction (1)		
	Fourth mark		
	$2x(-115) = \Delta H^{\circ} - 321.6$		
	Correct multiples and numbers (1))	
	ALLOW		
	2 x any number (including -4600 and		
	-3.86) except 2 x +/- 321.6		
	Notice Third and Fourth marks can be		
	scored by ΔH° = 2(-115) - (-321.6)		

Fifth mark	
$\Delta H^{\circ} = 2(-115) - (-321.6)$	
$= +91.6 \text{ (kJ mol}^{-1}\text{)}$	
OR	
$\Delta H^{\circ} = 2(-114.95) - (-321.6)$	
$= +91.7 \text{ (kJ mol}^{-1}\text{)}$	
Correct value for their calculation with correct sign	
IGNORE SF except 1	
ALLOW no positive sign only if correct working with correct signs given (1)	
Omitting 2x gives +206.6 (could get 4 marks)	
-4600 gives -598.4	
-3.86 gives +313.88	

Question Number	Acceptable Answers	Reject	Mark
3 (c)	((±) 0.5 x 2 x 100 /11) = (±)9.09 (%)		1
	ALLOW at 9.0909/9.091/9.1 and 9	9.10/9.0	

Question Number	Acceptable Answers	Reject	Mark
3 (d))	irst mark		2
	It is used as a raising agent / self raising flour / baking soda / baking powder	To make pastry rise	
	OR	Bicarbonate of soda	
	Causes cakes / (soda) bread to rise / expand. (1)		
	Second mark		
	Carbon dioxide (released on heating causes cakes / bread to rise)	Gas Air	
	OR		
	It reacts with acid to form carbon dioxide (in baking powder) providing bread /cake etc is mentioned (1)	Neutralizing acid foods	
	ALLOW Used in cooking green vegetables To keep green colour		

Question Number	Acceptable Answers	Reject	Mark
4 (a)	The heat/enthalpy/energy change (for a reaction) is independent of the path(way)/route IGNORE any extra detail referring to		1
	"initial and final states"	12	

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$CH_1 + 1 I/2 O_7$ $CO + 2H_2O$ $CO_7 + 2II_7O$ $CO_2 + 2H_2O$ (1) Both arrows in correct direction downwards (1)		2
	IGNORE state symbols, even if incorrect Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	$\Delta H = -890 - (-283) $ (1) = -607 (kJ mol ⁻¹) (1) Correct answer with no working scores (2) NOTE: +607 (kJ mol ⁻¹) scores (1) only		2

Question Number	Acceptable Answers	Reject	Mark
* 4 (b) (i	Cannot stop the reaction at CO OR the reaction produces CO ₂ /complete combustion occurs OR may produce some carbon/soot OR cannot react exact amounts of methane to oxygen	non-standard conditions Just incomplete combustion occurs Just forming 'other products' /just a 'mixture of products' Just methane is 'very reactive'/ 'explosive' Just heat loss Cannot measure the temperature change	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)	First mark: State of the H ₂ O Water is in the gas phase/water is (formed) as steam/water is not in its standard state/water is not (formed as a) liquid (1) Second mark: I dea of an energy change when there is a change of state		2
	Change of state involves an energy change /energy change (for the reaction given) is less exothermic (1)	Energy change is more exothermic /less endothermic Heat loss	
	ALLOW 'more endothermic' instead of 'less exothermic'	'Incomplete combustion'	
	IGNORE references to non-standard conditions		

Question Number	Correct Answer	Reject	Mark
5 (a)	F mark Enthalpy change when 1 mol of gaseous ions (1) ALLOW energy change/heat change/energy evolved/released/ given out/exothermic	Energy required or energy taken in Atoms or molecules (0)	2
	Second mark Is dissolved/hydrated/solvated such that further dilution causes no further heat change OR Is dissolved to produce an infinitely dilute solution/in excess water (1)	1 mol of water	
	ALLOW Is dissolved to produce a solution of 1.0 mol dm ⁻³		

Question Number	Acceptable Answers	Reject	Mark
5 (b)(i)	K ⁺ (aq) (+) F ⁻ (aq)	K ⁺ F ⁻ (aq)	1

Question	Acceptable Answers	Reject	Mark
Number			
5 (b)(ii)	$\Delta H_{sol} = -\Delta H_1 + \Delta H_2$		1
	OR		
	$\Delta H_{sol} = \Delta H_2 - \Delta H_1$		

Question	Acceptable Answers	Reject	Mark
Number			
5 (b)(iii)	(Standard) Lattice(enthalpy/energy/ Δ H)	LE/Lat - Lattice	1

Question Number	Acceptable Answers	Reject	Mark
5 (b)(iv)	First mark Selection of (-)817 rather than (-)807 (1)		2
	Second mark $\Delta H_{sol} = 817 - 805 = (+)12 \text{ (kJ mol}^{-1})$ (1)	-12 (max 1)	
	Just (+)12 (kJ mol ⁻¹) (2)		
	ALLOW TE for second mark e.g. for 807 gives (+) 2 (kJ mol ⁻¹)		
	ALLOW TE from incorrect b(ii)		

Question Number	Acceptable Answers	Reject	Mark
5 (c)(i)	EITHER No change/no measurable change in temperature OR (Very small) decrease in temperature (1)	Any reference to temp increase /exothermic	ന
	Thermometer not sensitive/precise enough/precision of thermometer is + or - 0.5 °C/graduations too large (1)	Just accuracy +/- 1 °C	
	Amount of energy taken in is small $/\Delta H_{sol}$ is small/mass of sodium chloride is small/slightly endothermic (1)		

Question Number	Acceptable Answers		Reject	Mark
* 5 (c)(ii)	(The reaction is endothermic so)			4
	Entropy(change) of surroundings decreases OR ΔS_{sur} is negative		S _{sur} is negative	
	OR -ΔH/T is negative (1)		
	But entropy (change)of system increases (as there is an increase in disorder) OR		S _{sys} is positive	
	ΔS_{sys} is positive (1)		
	Increase in entropy of system outweighs/greater than decrease in entropy of surroundings / value for entropy change of system is greater than entropy change of surroundings	(1)		
	Total entropy (change) is positive ((1)		
	All marks are stand alone			

Question	Acceptable Answers	Reject	Mark
Number	Acceptable Aliswers	Neject	IVIAIIX
* 5 (d)	Any four from:		4
	The difference between Born Haber and theoretical LE is greater for LiI than for LiCI (1)		
	(845 and 848 =) 3 for LiCI whereas (738 and 759 =) 21 for LiI (1)	Reject values with +	
	Iodide ion is larger than chloride ion/lower charge density on iodide ion (1)	Iodine/Chlorine atoms or molecules	
	The iodide ion is more likely (than the chloride ion) to be polarized (by lithium ion) (1)	Iodine/Chlorine atoms or molecules	
	Lil likely to have more covalent character than LiCl		
	(1)		